We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Hydrogel-Embedded 3-D Scaffold Provides Superior Matrix for Culture of Captured Circulating Tumor Cells

By LabMedica International staff writers
Posted on 17 Aug 2015
Findings obtained by a proof-of-concept study suggested that isolated circulating tumor cells (CTCs) could be induced to grow on three-dimensional scaffolding embedded into a rehydrated hydrogel matrix where they were available for study, manipulation, and transplant.

Improvements in microfluidic technologies have substantially advanced cancer research by enabling the isolation of rare CTCs for diagnostic and prognostic purposes. More...
However, the characterization of isolated CTCs has been limited due to the difficulty in recovering and growing isolated cells with high fidelity.

Investigators at Massachusetts General Hospital (Boston, USA) and their colleagues at Florida State University (Tallahassee, USA) and the University of Massachusetts (Amherst, USA) devised a strategy to substantially improve recovery of CTCs by using a three-dimensional scaffold integrated into a microfludic device. The transferable substrate was readily isolated after device operation for serial use in vivo as a transplanted tissue bed.

In a proof-of-concept study, a dry hydrogel scaffold was inserted into a capture chamber within the fluidic device and then rehydrated to fill the void volume of the capture chamber. Computational modeling was used to define different flow and pressure regimes that guided the conditions used to operate the chip. A cell suspension containing a prostate tumor cell line was used to verify that cancer cells would attach to the hydrogel matrix, which could be directly visualized under a microscope, and grow under these conditions.

Results published in the June 23, 2015, online edition of the journal Technology confirmed human prostate tumor cell attachment in the microfluidic scaffold chip, retrieval of the scaffold en masse, and serial implantation of the scaffold to a mouse model with preserved xenograft development.

"Companion models of circulating tumor cells can be a practical test bed to gain insight about new mutations and drug sensitivity of metastatic cells that can apply to patient care. This proof-of-concept study adds a new dimension to this important effort," said senior author Dr. Biju Parekkadan, assistant professor of surgery at Massachusetts General Hospital.

Related Links:

Massachusetts General Hospital
Florida State University
University of Massachusetts



Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Verification Panels for Assay Development & QC
Seroconversion Panels
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
Nasopharyngeal Applicator
CalgiSwab 5.5" Sterile Mini-tip Calcium Alginate Nasopharyngeal Swab w/Aluminum HDLE
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.