We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ZeptoMetrix an Antylia scientific company

Download Mobile App




British Diabetes Research Program Awarded Major Funding Boost

By LabMedica International staff writers
Posted on 09 Aug 2015
A British project to develop a long term insulin-producing implant for treatment of diabetes has received a major infusion of funding that will allow it to proceed with its five-year work plan.

The Oxford Islet Transplant Program at the University of Oxford (United Kingdom) is a member of the DRIVE (Diabetes Reversing Implants with enhanced Viability and long-term Efficacy) consortium, which comprises fourteen partners from seven European countries. More...
The University of Oxford component was recently awarded EUR 8.9 million (GBP 6.37 million) funding from the European Union’s Horizon 2020 – Research and Innovation Framework Program.

Currently the main treatment for diabetes is the daily injection of insulin. In patients where control is poor, transplantation of pancreatic cells is possible. However there are challenges with this therapy including the short supply of donor pancreases, the need to use three to four pancreases to get enough beta-cells for treatment and poor graft survival and retention at the transplant site. The DRIVE consortium will address these challenges by developing a completely new system to deliver pancreatic beta-cells effectively in a targeted and protected fashion. DRIVE’s five-year work plan will include animal testing, with a view to human testing at the end of the project.

Dr. Paul Johnson, director of the Oxford Islet Transplant Program and professor of pediatric surgery at the University of Oxford, said, "Over the past 10 years, the transplantation of insulin-producing pancreatic cells known as islet cells (that can sense blood sugar levels and release insulin to maintain normal sugar levels) has achieved very promising results in adults who have developed the severest complications from insulin-dependent diabetes. The challenge is to now make sure that more people can benefit from this minimally-invasive treatment."

Related Links:

University of Oxford



Platinum Member
Xylazine Immunoassay Test
Xylazine ELISA
Verification Panels for Assay Development & QC
Seroconversion Panels
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
Pipette Controller
Sapphire MaxiPette
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.