We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Advanced Genetic Tools Revamp Search for Drugs to Treat Cryptosporidium

By LabMedica International staff writers
Posted on 28 Jul 2015
Genetically engineered modifications to genome of the diarrhea-causing parasite Cryptosporidium are expected to expedite research towards vaccine and drug development to prevent or cure infection by this pathogen.

Recent studies into the global causes of severe diarrhea in young children have identified the protozoan parasite Cryptosporidium as the second most important diarrheal pathogen after Rotavirus. More...
Cryptosporidium is also an opportunistic pathogen in the contexts of human immunodeficiency virus (HIV)-caused AIDS and organ transplantation.

There is no vaccine against Cryptosporidium and only a single [US] Food and Drugs Administration approved drug—nitazoxanide—that provides no benefit for either malnourished children or immunocompromised patients. Cryptosporidiosis drug and vaccine development are limited by a lack of systems for continuous culture, good animal models, and molecular genetic tools.

Investigators at the University of Georgia (Athens, USA) have applied CRISPR/Cas technology to the Cryptosporidium problem. Since 2013, the CRISPR/Cas system has been used in research for gene editing (adding, disrupting, or changing the sequence of specific genes) and gene regulation. By delivering the Cas9 protein and appropriate guide RNAs into a cell, the organism's genome can be cut at any desired location.

The investigators reported in the July 15, 2015, online edition of the journal Nature that by applying this methodology they had introduced a reporter gene into the parasite that caused it to emit light that could be observed under a microscope for in vivo and in vitro drug screening. To isolate stable transgenic organisms with this gene they developed a mouse model that delivered sporozoites directly into the intestine. They also established and optimized transfection of C. parvum sporozoites in tissue culture for in vivo selection for aminoglycoside drug resistance.

"One of the biggest obstacles with Cryptosporidium is that it is very difficult to study in the lab, and that has made scientists and funders shy away from studying the parasite," said senior author Dr. Boris Striepen, professor of cellular biology at the University of Georgia. "We think that the techniques reported in this paper will open the doors for discovery in Cryptosporidium research, and that will, in turn, lead to new and urgently needed therapeutics."

"Now that we have overcome these initial hurdles, we have a great opportunity to move forward much faster," said Dr. Striepen. "There is need, there is opportunity and now there is technical ability, so I think we may have reached a turning point in the fight against this important disease. There are enormous libraries of chemicals available now, and some of these chemicals may work as a treatment for Cryptosporidium and this technology will help us find them much more rapidly."

Related Links:

University of Georgia 



Platinum Member
Xylazine Immunoassay Test
Xylazine ELISA
Verification Panels for Assay Development & QC
Seroconversion Panels
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
Blood Ammonia Test Analyzer
DRI-CHEM NX10N
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.