We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ZeptoMetrix an Antylia scientific company

Download Mobile App




Japanese Researchers Demonstrate Novel Transcutaneous Influenza Vaccination Using a Dissolving Microneedle Patch

By LabMedica International staff writers
Posted on 27 Jul 2015
Vaccination via a biodegradable microneedle patch was shown to generate immune response to various strains of the influenza virus that were equal to or stronger than those induced by traditional hypodermic needle injection.

Previous attempts using microneedles made of silicon or metal were not successful primarily due to the risk of the needles breaking off in the skin, leaving tiny fragments behind. More...
To avoid this problem, investigators at Osaka University (Japan) prepared microneedle patches from hyaluronic acid, a naturally occurring and water soluble biological material. The "MicroHyala" microneedle patch was loaded with the material to be injected and then applied like a plaster. The needles pierced the top layer of skin and then dissolved into the body, taking the vaccine with them.

In the current study the investigators examined the clinical safety and efficacy of the MicroHyala vaccination method using MH (flu-MH), which contains trivalent influenza hemagglutinins (15 micrograms each). Subjects were treated transcutaneously (TCI group) with a flu-MH microneedle patch, and were compared with subjects who received subcutaneous injections (SCI group) of a solution containing 15 micrograms of each influenza antigen.

Results published in the July 2015 issue of the journal Biomaterials revealed that no severe local or systemic adverse events were detected in either group. Immune responses against A/H1N1 and A/H3N2 strains were induced equally in the TCI and SCI groups. Moreover, the efficacy of the vaccine against the B strain in the TCI group was stronger than that in the SCI group.

"Our novel transcutaneous vaccination using a dissolving microneedle patch is the only application vaccination system that is readily adaptable for widespread practical use," said senior author Dr. Shinsaku Nakagawa, professor of medical pharmacy at Osaka University. "Because the new patch is so easy to use, we believe it will be particularly effective in supporting vaccination in developing countries."

"We were excited to see that our new microneedle patch is just as effective as the needle-delivered flu vaccines, and in some cases even more effective," said Dr. Nakagawa. "We have shown that the patch is safe and that it works well. Since it is also painless and very easy for non-trained people to use, we think it could bring about a major change in the way we administer vaccines globally."

Related Links:

Osaka University



Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Verification Panels for Assay Development & QC
Seroconversion Panels
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
Automated Staining Unit
RAL Stainer
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.