Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ZeptoMetrix an Antylia scientific company

Download Mobile App




Cancer Development: A Molecular Pathway Controls ErbB Signaling via PACS-2 Regulation of Recycling of the Metalloproteinase ADAM17

By LabMedica International staff writers
Posted on 13 Jul 2015
Some types of cancer are triggered by excessive ErbB signaling, and researchers have now discovered a molecular pathway that regulates this process.

The ErbB family of proteins contains four receptor tyrosine kinases, structurally related to the epidermal growth factor receptor (EGFR), its first discovered member. More...
In humans, the family includes Her1 (EGFR, ErbB1), Her2 (Neu, ErbB2), Her3 (ErbB3), and Her4 (ErbB4). Insufficient ErbB signaling in humans is associated with the development of neurodegenerative diseases, such as multiple sclerosis and Alzheimer's disease, while excessive ErbB signaling is associated with the development of a wide variety of types of solid tumor. ErbB-1 and ErbB-2 are found in many human cancers, and their excessive signaling may be critical factors in the development and malignancy of these tumors.

Investigators at the University of Copenhagen (Denmark) were interested in how the metalloproteinase ADAM17 (ADAM metallopeptidase domain 17) activated ErbB signaling by releasing ligands from the cell surface, a key step underlying epithelial development, growth, and tumor progression.

"ADAM17 is very important to the growth of cancer tumors. It functions as a molecular pair of scissors, separating molecules from the cell's surface which then increases cell growth. The problem being that in cancer cells this growth is over-activated and so the cancer tumor grows rapidly and uncontrollably," said first author Dr. Sarah Dombernowsky, a post-doctoral researcher in the department of biomedicine at the University of Copenhagen.

Using a functional genome-wide siRNA (short interfering RNA) screen, the investigators identified the sorting protein PACS-2 (phosphofurin acidic cluster sorting protein 2) as a regulator of ADAM17 trafficking and ErbB signaling. PACS-2 is a multifunctional sorting protein that controls endoplasmic reticulum (ER)-mitochondria communication. It may also be involved in ion channel trafficking, directing acidic cluster-containing ion channels to distinct subcellular compartments.

PACS-2 loss reduced ADAM17 cell-surface levels and ADAM17-dependent ErbB ligand shedding, without apparent effects on related proteases. PACS-2 co-localized with ADAM17 on early endosomes, and PACS-2 knockdown decreased the recycling and stability of internalized ADAM17. Therefore, PACS-2 sustained ADAM17 cell-surface activity by diverting ADAM17 away from degradative pathways.

"We have discovered that the protein PACS-2 plays a big part in the transportation of ADAM17 in cells," said Dr. Dombernowsky. "ADAM17 moves in and out of the cell, but it has to remain on the surface to be able to cut off molecules and thus further growth. We have showed that without the PACS-2, ADAM17 returns less regularly to the surface; it is broken down instead. We are currently experimenting on mice to see if the cancer growth slows down, and it is our distinct expectation that it will. In the long-term, we would like to develop something that through PACS-2 allows us to fine-tune ADAM17, which could then eventually become part of a more targeted cancer treatment."

The study was published in the June 25, 2015, online edition of the journal Nature Communications.

Related Links:
University of Copenhagen



Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Verification Panels for Assay Development & QC
Seroconversion Panels
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
High-Density Lipoprotein Containing Cholesterol Assay
HDL-c direct FS
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.