We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Bioreactor Culture of Dopamine-Producing Neurons May Lead to Personalized Treatment of Parkinson's Disease

By LabMedica International staff writers
Posted on 05 Jul 2015
By developing a procedure for transforming skin cells into functional dopamine-producing neurons, researchers have taken an important first step towards the development of personalized treatment of Parkinson's disease.

Parkinson's disease is characterized by the gradual loss of dopamine-producing neurons in the Substantia nigra section of the midbrain. More...
So far there is no drug treatment available to halt or reverse this process.

Investigators at the University of Luxembourg (Luxembourg City) have applied the latest innovations in developmental biology and microfluidic cell culture to generate a biologically realistic and economically efficient route for personalized drug discovery for Parkinson's disease. The investigators initially converted normal skin cells into induced pluripotent stem cells (iPSCs) and then differentiated the iPSCs into dopaminergic neurons within three-dimensional microfluidic cell culture bioreactors.

Results published in the June 7, 2015, edition of the journal Lab on a Chip revealed that microbioreactor culture was as efficient as macroscopic culture, with up to 19% of differentiated neurons immunoreactive for tyrosine hydroxylase, the penultimate enzyme in the dopamine biosynthetic pathway.

"We have the neurons grow in a gel that yields a far better model of their natural, three-dimensional environment," said senior author Dr. Ronan Fleming, leader of the systems biochemistry group at the University of Luxembourg. "In drug development, dozens of chemical substances can be tested for possible therapeutic effects in a single step. Because we use far smaller amounts of substances than in conventional cell culture systems, the costs drop to about one-tenth the usual. A further advantage is that the bioreactors can be loaded with cells originating from the skin cells of individual Parkinson's patients. This is an important step towards personalized drug development."

Related Links:

University of Luxembourg



Platinum Member
Xylazine Immunoassay Test
Xylazine ELISA
Verification Panels for Assay Development & QC
Seroconversion Panels
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
ESR Analyzer
miniiSED™
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.