We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ZeptoMetrix an Antylia scientific company

Download Mobile App




Potential Diabetes Drug Works by Relieving Endoplasmic Reticulum Stress

By LabMedica International staff writers
Posted on 30 Jun 2015
A recent paper linked stress affecting the endoplasmic reticulum (ER) to the development of several chronic diseases including diabetes, retinitis pigmentosa, cystic fibrosis, Huntington's disease, and Alzheimer's disease.

The ER plays a critical role in protein, lipid, and glucose metabolism as well as cellular calcium signaling and homeostasis. More...
Disruptions of ER function and chronic ER stress have been associated with many disease states ranging from diabetes and neurodegenerative diseases to cancer and inflammation. Although ER targeting shows therapeutic promise in preclinical models of obesity and other diseases, available drugs generally lack the specificity and other pharmacological properties required for effective clinical use.

To gain a better understanding of how the ER connects to disease development, investigators at Harvard University Medical School (Boston, MA, USA) designed and chemically and genetically validated two high-throughput functional screening systems that independently measured the free chaperone content and protein-folding capacity of the ER in living cells.

Using these screening platforms they characterized a small-molecule compound, azoramide (N-{2-[2-(4-Chlorophenyl)-1,3-thiazol-4-yl]ethyl}butanamide), which improved ER protein-folding ability and activated ER chaperone capacity to protect cells against ER stress in multiple systems.

They further reported in the June 17, 2015, online edition of the journal Science Translational Medicine that azoramide exhibited potent anti-diabetic efficacy in two independent mouse models of obesity by improving insulin sensitivity and pancreatic beta cell function.

"While we and others had previously discovered the central role that ER stress plays in diabetes and metabolic disease, efforts to translate that knowledge into clinically effective ways to improve ER function have had limited success so far," said senior author, Dr. Gokhan S. Hotamisligil, professor of genetics and complex diseases at Harvard University Medical School. "These results show the broad potential for azoramide or drugs with similar functions targeted at the endoplasmic reticulum. ER dysfunction is implicated in many other disease processes such as cystic fibrosis, Huntington's disease, and Alzheimer's, which makes this novel screening strategy an exciting new tool that can be applied by multiple labs to discover new drug candidates for diseases that are linked to ER stress."

Related Links:

Harvard University Medical School



Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Verification Panels for Assay Development & QC
Seroconversion Panels
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
D-Dimer Test
Epithod 616 D-Dimer Kit
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.