Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Structure of Integral Membrane Proteins Readily Solved Using an Alternative In Meso In Situ Serial Crystallography Technique

By LabMedica International staff writers
Posted on 16 Jun 2015
A recent paper discussed the benefits of using synthetic cyclic olefin copolymer (COC) plates to replace glass as the base for generation and growth of crystals of membrane and soluble proteins for high-resolution X-ray crystallographic structure determination. More...


Membrane proteins perform critical functions in living cells related to signal transduction, transport, and energy transformations, and, as such, are implicated in a multitude of malfunctions and diseases. However, the structural and functional understanding of membrane proteins lags behind that of soluble proteins, mainly, due to difficulties associated with their solubilization and generation of diffraction quality crystals. Crystallization in lipidic mesophases (also known as in meso or LCP crystallization) is a promising technique, which was successfully applied to obtain high resolution structures of microbial rhodopsins, photosynthetic proteins, outer membrane beta barrels, and G protein-coupled receptors.

A mesophase is a phase of matter intermediate between a true liquid and a true solid that exists in a liquid crystal. In meso crystallization takes advantage of a native-like membrane environment and typically produces crystals with lower solvent content and better ordering as compared to traditional crystallization from detergent solutions. The method is not difficult, but requires an understanding of lipid phase behavior and practice in handling viscous mesophase materials.

Investigators at Trinity College (Dublin, Ireland) described an alternative approach for the in meso in situ serial crystallography (IMISX) method, which showed that the use of COC plates provided many advantages over glass plates and was compatible with high-throughput in situ measurements. The novel IMISX technique was demonstrated with AlgE and PepT (alginate and peptide transporters, respectively) as model integral membrane proteins and with lysozyme as a test soluble protein.

The synthetic COC was chosen for several reasons. To begin with, it is commercially available in sheets of varying thicknesses and is inexpensive. Further, it is relatively watertight, optically transparent, UV-transmitting and non-birefringent. As a plastic, COC is chemically inert and is a weak absorber and scatterer of X-rays.

A paper published in the June 2015 online edition of the journal Acta Crystallographica D described the IMISX protocol, which required less than 10 micrograms of protein and generated structures with resolutions ranging from 0.18 to 0.28 nanometers.

Senior author Dr. Martin Caffrey, professor of membrane structural and functional biology at Trinity College, said, "This is a truly exciting development. We have demonstrated the method on a variety of cell membrane proteins, some of which act as transporters. It will work with existing equipment at a host of facilities worldwide, and it is very simple to implement. The best part of this is that these proteins are as close to being "live" and yet packaged in the crystals we need to determine their structure as they could ever be. As a result, this breakthrough is likely to supplant existing protocols and will make the early stages of drug development considerably more efficient."

Related Links:
Trinity College



Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Verification Panels for Assay Development & QC
Seroconversion Panels
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
Turbidimetric Control
D-Dimer Turbidimetric Control
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.