We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




New Version of Old Drug Shows Promise for Treating Drug-Resistant Tuberculosis

By LabMedica International staff writers
Posted on 15 Jun 2015
A team of molecular microbiologists has determined the mechanism by which the Streptomyces-derived antibiotic griselimycin blocks the growth of Mycobacterium tuberculosis, the bacterium responsible for causing more than eight million cases of tuberculosis annually on a worldwide basis.

Investigators from the Helmholtz Center for Infection Research (Braunschweig, Germany), other German research institutes, and the biomedical company Sanofi (Paris, France) were interested in exploring the possibility of using griselimycin or one of its derivatives for treating drug resistant tuberculosis; while this drug had been evaluated in the 1960's it had suffered in comparison to others. More...
However, M. tuberculosis has developed resistance to most of those other drugs, and development of replacements is a top priority.

The investigators reported in the June 5, 2015, issue of the journal Science that a variant of griselimycinm, cyclohexylgriselimycin, was particularly effective against M. tuberculosis, in cells and when administered orally to an animal model.

The effectiveness of cyclohexylgriselimycin was found to be due to the drug's inhibition of the M. tuberculosis DNA polymerase sliding clamp DnaN. A DNA clamp, also known as a sliding clamp, is a protein fold that serves as a processivity-promoting factor in DNA replication. Processivity is an enzyme's ability to catalyze consecutive reactions without releasing its substrate. As a critical component of the DNA polymerase III holoenzyme, the clamp protein binds DNA polymerase and prevents this enzyme from dissociating from the template DNA strand. The clamp-polymerase protein–protein interactions are stronger and more specific than the direct interactions between the polymerase and the template DNA strand; because one of the rate-limiting steps in the DNA synthesis reaction is the association of the polymerase with the DNA template, the presence of the sliding clamp dramatically increases the number of nucleotides that the polymerase can add to the growing strand per association event. The presence of the DNA clamp can increase the rate of DNA synthesis up to 1,000-fold compared with a nonprocessive polymerase.

As inhibiting the DNA clamp is a completely different mechanisms from those of antibiotics now used against tuberculosis and other bacterial pathogens, the investigators consider that the risk of developing resistance to cyclohexylgriselimycin is low.

"We hope that cyclohexylgriselimycin will become an agent that can even be used against resistant tuberculosis pathogens in the future and contributes to a more successful fight against this dreadful disease," said senior author Dr. Rolf Müller, head of the department of microbial natural products at the Helmholtz Centre for Infection Research. "In the tuberculosis pathogen, the substance binds to the so-called DNA clamp and thus suppresses the activity of the DNA polymerase enzyme, which multiplies the genetic information inside the cell. We resumed the work on this agent and optimized it such that it shows excellent activity in the infection model—even against multi-resistant tuberculosis pathogens."

Related Links:

Helmholtz Centre for Infection Research
Sanofi



Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Verification Panels for Assay Development & QC
Seroconversion Panels
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
Procalcitonin Test
LIAISON B•R•A•H•M•S PCT II GEN
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.