We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Mouse Model Demonstrates Importance of Interleukin-6 to Spread of Prostate Cancer

By LabMedica International staff writers
Posted on 14 Jun 2015
Cancer researchers used a recently developed mouse model of metastatic prostate cancer to determine what factors are involved in the processes that trigger cell proliferation and drive progression of the disease.

Investigators at Cold Spring Harbor Laboratory (NY, USA) worked with the RapidCaP GEM (genetically engineered mouse) modeling system that uses surgical injection for viral gene delivery to the prostate.

Discussing their results in the March 31, 2015, online edition of the journal Cancer Discovery, the investigators explained that this metastasis was driven by MYC, and not AKT, activation. More...
MYC (v-myc myelocytomatosis viral oncogene homolog protein) is a transcription factor that activates expression of a great number of genes through binding on consensus sequences and recruiting histone acetyltransferases (HATs). By acting as a transcriptional repressor in normal cells, MYC has a direct role in the control of DNA replication. Akt, also known as protein kinase B, is a serine/threonine-specific protein kinase that plays a key role in multiple cellular processes such as glucose metabolism, apoptosis, cell proliferation, transcription, and cell migration.

The investigators showed that cell–cell communication by interleukin-6 (IL-6) drove the AKT–MYC switch through activation of the AKT-suppressing phosphatase PHLPP2 (PH domain and leucine rich repeat protein phosphatase-like), when PTEN and p53 were lost together, but not separately. IL-6 then communicated a downstream program of STAT3 (signal transducer and activator of transcription 3)-mediated MYC activation, which drove cell proliferation.

Loss-of-function mutations of the PTEN (phosphatase and tensin homolog) gene are present in 60% to 70% of metastatic cancers in humans. PTEN acts as a tumor suppressor gene thanks to the role of its protein product in regulation of the cycle of cell division, preventing cells from growing and dividing too rapidly. Mutations in the P53 gene contribute to about half of the cases of human cancer. In these mutants normal p53 protein function is blocked, and the protein is unable to stop multiplication of the damaged cell.

IL-6 is secreted by T-cells and macrophages to stimulate immune response during infection and after trauma, especially burns or other tissue damage leading to inflammation. Advanced/metastatic cancer patients have higher levels of IL-6 in their blood. One example of this is pancreatic cancer, with noted elevation of IL-6 present in patients correlating with poor survival rates. Hence, there is an interest in developing anti-IL-6 agents as therapy against many of these diseases.

"Our research suggests that IL-6 could be a marker for when the disease switches to a more dangerous state that is ultimately hormone therapy-resistant," said senior author Dr. Lloyd Trotman, an associate professor at Cold Spring Harbor Laboratory. "We are really hopeful that translating the IL-6 discovery into the clinics could help us stratify patients into good responders and bad responders. For any hospital this would be a major breakthrough. The gain could be immense; because today's problem is that the variability in response of humans to hormone therapy is amazing. For one man this therapy might be great, might reduce disease burden dramatically for many, many, years, and be an extreme benefit. For others there is almost no response, and it is still not clear to clinicians who is who."

Related Links:

Cold Spring Harbor Laboratory



Platinum Member
ADAMTS-13 Protease Activity Test
ATS-13 Activity Assay
Verification Panels for Assay Development & QC
Seroconversion Panels
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
Parainfluenza Virus Test
PARAINFLUENZA ELISA
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.