We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ZeptoMetrix an Antylia scientific company

Download Mobile App




Zebrafish Embryo Model Helps Explain How Coronary Blood Vessels Develop

By LabMedica International staff writers
Posted on 10 Jun 2015
Developmental biologists have used a zebrafish embryo model to study the factors that control the formation and maturation of coronary blood vessels.

Zebrafish have become an important vertebrate model for cardiovascular research, as these animals have the ability to regenerate their heart if damaged, and because the transparency of the embryos allows easy observation of internal processes like blood vessel development. More...


Investigators at Children’s Hospital Los Angeles (CA, USA) used confocal microscopy and time-lapse imaging to visualize development of coronary vessels in zebrafish embryos. They reported in the May 26, 2015, issue of the journal Developmental Cell that coronary vessels sprang from the endocardium, specifically from the atrioventricular canal, the structure that divides the heart into compartments.

At the molecular level the investigators learned that endothelial cells expressing the chemokine receptor Cxcr4 (C-X-C chemokine receptor type 4) migrated to vascularize the ventricle under the guidance of the myocardium-expressed ligand Cxcl12 (C-X-C motif chemokine 12). Mutant zebrafish lacking Cxcr4 failed to form a vascular network, whereas ectopic expression of Cxcl12 ligand induced coronary vessel formation. Importantly, Cxcr4 mutant zebrafish failed to undergo heart regeneration following injury.

“This furthers our efforts into heart regeneration to repair human hearts,” said senior author Dr. Ching-Ling Lien, assistant professor of cardiothoracic surgery at Children’s Hospital Los Angeles. “We have now found a novel source of cells that can differentiate into coronary vessels and have identified the factors required.”

“Children or young adults may not be aware of having abnormal coronary vessels because their circulation is adequate until the heart is stressed by increased demands, for instance when participating in strenuous sports,” said Dr. Lien. “Then suddenly, an apparently healthy, young person dies. Alternatively, a person with abnormal coronary vessels might have higher risk of experiencing heart attacks later on in life. Our findings will guide future study toward understanding these devastating conditions in order to be better able to diagnose them and develop interventional strategies.”

Related Links:

Children’s Hospital Los Angeles



Platinum Member
ADAMTS-13 Protease Activity Test
ATS-13 Activity Assay
Verification Panels for Assay Development & QC
Seroconversion Panels
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
Real-Time PCR System
Gentier 96T
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.