We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Electron Microscopy Reveals How Viral DNA Survives Extremes of Heat and Acidity

By LabMedica International staff writers
Posted on 07 Jun 2015
A team of molecular biologists has used advanced electron microscopy techniques to unlock the structure of a unique virus that infects bacteria that live under conditions of extreme heat and acidity.

The nonenveloped, rod-shaped virus SIRV2 (Sulfolobus islandicus rod-shaped virus 2) infects the hyperthermophilic acidophile Sulfolobus islandicus, a species of archaea that lives in hot springs at 80 degrees Celsius and pH 3. More...
Investigators at the University of Virginia (Charlottesville, USA) wanted to know how the virus managed to safeguard its critical DNA core and whether the virus could be exploited for use as a delivery system for gene therapy in humans.

To study the structure of the viral DNA, the investigators turned to the FEI (Hillsboro, OR, USA) Titan Krios electron microscope, which had recently become operational at the University of Virginia. The Titan Krios transmission electron microscope (TEM) was tailored for use in protein and cellular imaging. Its revolutionary cryo-based technology and stability was designed to permit a full range of semi-automated applications, including: electron crystallography, single particle analysis, cryo-electron microscopy, and dual-axis cellular tomography of frozen hydrated cell organelles and cells.

The investigators reported in the May 22, 2015, issue of the journal Science that they used the Titan Krios to generate a three-dimensional reconstruction of the SIRV2 virion at approximately 0.4 nm resolution. Their study revealed a previously unknown form of virion organization. Although almost half of the capsid protein was unstructured in solution, this unstructured region folded in the virion into a single extended alpha helix that wrapped around the DNA. The DNA was entirely in the A-form, which suggested that there might be a mechanism shared by the virus with bacterial spores for protecting DNA in the most adverse environments.

"Many people have felt that this A-form of DNA is only found in the laboratory under very non-biological conditions, when DNA is dehydrated or dry," said senior author Dr. Edward H. Egelman, professor of biochemistry and molecular genetics at the University of Virginia. "Instead, it appears to be a general mechanism in biology for protecting DNA."

"What is interesting and unusual is being able to see how proteins and DNA can be put together in a way that is absolutely stable under the harshest conditions imaginable," said Dr. Engelman. “We have discovered what appears to be a basic mechanism of resistance—to heat, to desiccation, to ultraviolet radiation. And knowing that, then, we can go in many different directions, including developing ways to package DNA for gene therapy."

Related Links:

University of Virginia



Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Verification Panels for Assay Development & QC
Seroconversion Panels
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
Automatic Western Blot Analyzer
Tenfly Phoenix Blot Analyzer
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.