Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Cabut Coordinates Metabolism and Clock in Response to Nutrient Sensing

By LabMedica International staff writers
Posted on 01 Jun 2015
Using a Drosophila fruit fly model to study sugar sensing, researchers have discovered that the transcription factor and developmental growth regulator, cabut, coordinates energy metabolism as well as the circadian clock in response to sugar sensing.

Sugar feeding in flies leads to a sugar-sensing pathway that along one branch induces expression of specific genes, but also triggers a repression branch of the sugar-sensing transcriptional network via cabut (CBT, encoded by cbt) in Drosophila melanogaster. More...
However, mechanisms of transcriptional repression upon sugar sensing have remained elusive. In the new collaborative study of response to sugar, a team of researchers, led by Prof. Ville Hietakangas of the University of Helsinki (Helsinki, Finland) and Prof. Sebastian Kadener of the Hebrew University of Jerusalem (Jerusalem, Israel), found that induction of cbt represses accumulation of several metabolic targets and provides a regulatory link between nutrient sensing and the circadian clock.

Among the metabolic targets, CBT was found to repress the expression of both isoforms of the enzyme phosphoenolpyruvate carboxykinase (PEPCK). They also found that upon sugar feeding cbt is rapidly induced through direct regulation by the Mondo‐Mlx transcription factor complex. Deregulation of pepck1 in mlx mutants was found to underly the imbalance of glycerol and glucose metabolism as well as the developmental lethality of these mutants.

In addition to a subset of metabolic genes per se, the researchers found that CBT also targets a subset of genes regulated by the circadian clock and represses the cycling of metabolic target genes of this clock. They observed that perturbation of CBT levels even led to deregulation of the circadian transcriptome and circadian behavioral patterns.

The study, by Bartok O, Mari Teesalu, et al, was published online April 27, 2015, in EMBO Journal.

Related Links:

University of Helsinki
Hebrew University of Jerusalem



Platinum Member
Xylazine Immunoassay Test
Xylazine ELISA
Verification Panels for Assay Development & QC
Seroconversion Panels
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
DNA Extraction Kit
MagMAX DNA Multi-Sample Ultra 2.0 Kit
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.