Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Molecular Modulator of Regulatory T-Cell Behavior Identified

By LabMedica International staff writers
Posted on 25 May 2015
A mechanism has been identified that explains how regulatory T-cells (Treg cells) suppress harmful T-cell responses that can lead to the development of autoimmune diseases such as type I diabetes and rheumatoid arthritis.

Treg cells play a pivotal role in suppressing self-harmful T-cell responses, but how they mediate suppression to maintain immune homeostasis and limit responses during inflammation has not been well understood.

Investigators at the University of Manchester (United Kingdom) examined the role of the integrin alphavbeta8 in the modulation of Treg behavior. More...
They reported in the May 12, 2015, online edition of the journal Immunity that effector Treg cells expressed high amounts of integrin alphavbeta8, which enabled them to activate latent transforming growth factor-beta (TGF-beta).

Working with a mouse model, the investigators showed that specific deletion of integrin alphavbeta8 from Treg cells did not result in the generation of spontaneous inflammatory or autoimmune behavior, suggesting that this pathway was not important in Treg cell-mediated maintenance of immune homeostasis. However, Treg cells lacking expression of integrin alphavbeta8 were unable to suppress pathogenic T-cell responses during active inflammation.

Senior author Dr. Mark Travis, lecturer in inflammation research at the University of Manchester, said, “Regulatory T-cells are already being used in clinical trials where the cells are taken from the patient, multiplied, and then given back to the patient to suppress their illness. By understanding the mechanisms behind how regulatory T- cells work, we could improve on these therapies, which can be potentially useful in conditions ranging from type I diabetes to multiple sclerosis, rheumatoid arthritis and inflammatory bowel disease. This knowledge is vitally important when trying to make regulatory T-cells for therapy. By knowing the importance of this pathway, we can now work to improve the suppressive nature of regulatory T-cells to make them more effective as treatments for disease.”

“It is fascinating that getting rid of just one molecule can have such an impact on the body’s ability to fight disease. Our research is all about how the molecules interlink and react to each other, and in certain situations targeting just one molecule can boost or inhibit a response, said Dr. Travis.”

Related Links:

University of Manchester



Platinum Member
ADAMTS-13 Protease Activity Test
ATS-13 Activity Assay
Verification Panels for Assay Development & QC
Seroconversion Panels
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
High-Density Lipoprotein Containing Cholesterol Assay
HDL-c direct FS
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.