We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




DNA and Protein Composite Vaccine Produces Long Lasting Immunity Against Chagas Disease in Mice

By LabMedica International staff writers
Posted on 17 May 2015
A candidate vaccine for Chagas disease was found to induce long-lasting immunity against the Trypanosoma cruzi parasite in mice.

Chagas disease, or American trypanosomiasis, is a tropical parasitic disease caused by the protozoan Trypanosoma cruzi. More...
It is spread mostly by insects known as Triatominae or kissing bugs. The symptoms change over the course of the infection. In the early stage, symptoms are typically either not present or mild and may include fever, swollen lymph nodes, headaches, or local swelling at the site of the bite. After eight to 12 weeks, individuals enter the chronic phase of disease, and in 60%–70% of cases it never produces further manifestations. The other 30%–40% of people develop further symptoms 10 to 30 years after the initial infection, including enlargement of the ventricles of the heart in 20%–30% of cases, which may lead to heart failure.

Investigators at the University of Texas Medical Branch (Galveston, USA) had previously obtained promising results with a vaccine that contained three particular parasite proteins. In the current study, they expanded on the earlier work by vaccinating mice with a combination of two of the T. cruzi proteins (TcG2 and TcG4), which had proven to be the most potent in provoking both an antibody and a T-cell immune response.

The investigators immunized C57BL/6 mice with the TcG2/TcG4 vaccine delivered by a DNA-prime/Protein-boost (D/P) approach. In this procedure the first injection contained DNA coding for the TcG2 and TcG4 proteins, and the second, three weeks later, contained a mix of the two proteins themselves. Some mice were also given a booster immunization three months later, which consisted of the mix of the two proteins (D/P/P regimen).

Results published in the May 7, 2015, online edition of the journal PLOS Pathogens revealed that mice challenged with T. cruzi immediately after immunization with the D/P vaccine were capable of controlling 90%–97% of the acute parasitemia and tissue parasite burden, and, subsequently, inflammatory infiltrate and tissue fibrosis were particularly absent in the heart and skeletal muscle of vaccinated mice.

D/P vaccination elicited CD4+ (30-38%) and CD8+ (22-42%) T-cells that maintained an effector phenotype up to 180 days following vaccination and were capable of responding to antigenic stimulus or challenge infection by a rapid expansion with type I cytokine production and cytolytic T-lymphocyte activity. Subsequently, challenge infection at 120 or 180 days following vaccination, resulted in two to three-fold lower parasite burden in vaccinated mice than was noted in unvaccinated/infected mice.

Summing up the results, the investigators said, "The TcG2/TcG4 D/P vaccine provided long-term anti-T. cruzi T-cell immunity, and booster immunization would be an effective strategy to maintain or enhance the vaccine-induced protective immunity against T. cruzi infection and Chagas disease. The next steps toward clinical studies in humans will include characterizing the quality and quantity of immunity to the vaccine candidates in naïve individuals."

Related Links:

University of Texas Medical Branch



Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Verification Panels for Assay Development & QC
Seroconversion Panels
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
High-Density Lipoprotein Containing Cholesterol Assay
HDL-c direct FS
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.