We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ZeptoMetrix an Antylia scientific company

Download Mobile App




Crystal Structure of CARDS Toxin Expected to Advance Respiratory Disease Treatment

By LabMedica International staff writers
Posted on 20 Apr 2015
A recent paper described the molecular structure of Mycoplasma pneumoniae's Community Acquired Respiratory Distress Syndrome (CARDS) toxin and explained how knowing this structure may lead to advances in the prevention and treatment of diseases caused by this respiratory pathogen.

Mycoplasma pneumoniae is a very small bacterium in the class Mollicutes. More...
It is a human pathogen that causes the disease mycoplasma pneumonia, a form of atypical bacterial pneumonia related to cold agglutinin disease. The organism is characterized by the absence of a peptidoglycan cell wall and resulting resistance to many antibacterial agents. As part of the infectious process, the bacterium expresses the 591-amino acid long CARDS toxin virulence factor with both mono-ADP ribosyltransferase (mART) and vacuolating activities. CARDS toxin binds to human surfactant protein A and annexin A2 on airway epithelial cells and is internalized, leading to a range of pathological genetic events.

In a paper published in the April 7, 2015, online edition of the journal Proceedings of the National Academy of Sciences of the United States of America (PNAS) investigators at the University of Texas Health Science Center (San Antonio, USA) presented the X-ray crystallography-derived structure of CARDS toxin. The results depicted a triangular molecule in which N-terminal mART and C-terminal tandem beta-trefoil domains associated to form an overall architecture distinct from other well-recognized ADP-ribosylating bacterial toxins. The investigators demonstrated that CARDS toxin bound phosphatidylcholine and sphingomyelin specifically over other membrane lipids, and that cell surface binding and internalization activities were housed within the C-terminal beta-trefoil domain.

Recombinant CARDS toxin administered to naive mice induced an allergic-type inflammatory response and airway hyperreactivity, suggesting that an analogous response in humans might play a causal role in M. pneumoniae-associated asthma.

"We know a lot about how the toxin works, but we did not have its three-dimensional structure," said contributing author Dr. Joel B. Baseman, professor of microbiology and immunology at the University of Texas Health Science Center. "The structure shows us the molecular architecture of the protein, which permits the rational design of effective drugs and vaccines to neutralize the injurious effects of CARDS toxin. Blocking the toxin could prove to be a major advance in the prevention and care of a wide range of acute and chronic airway diseases."

Related Links:

University of Texas Health Science Center



Platinum Member
ADAMTS-13 Protease Activity Test
ATS-13 Activity Assay
Verification Panels for Assay Development & QC
Seroconversion Panels
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
NEW PRODUCT : SILICONE WASHING MACHINE TRAY COVER WITH VICOLAB SILICONE NET VICOLAB®
REGISTRED 682.9
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.