Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Feasibility Study Supports Use of Immunomagnetic Approach to Study Circulating Cancer Cells

By LabMedica International staff writers
Posted on 01 Apr 2015
Cancer researchers have combined the strength of magnetic separation with the specificity of immunochemical biomarker recognition to demonstrate the feasibility of capturing and analyzing rare circulating cells from the blood stream of cancer patients.

Writing in the March 4, 2015, online edition of the journal Scientific Reports, investigators at Dartmouth College (NH, USA) described a two-dimensional micromagnet array that they used to characterize generation of the magnetic field and to quantify the impact of micromagnets on rare cell separation. More...
In this paper, they presented a theoretical framework and technical approach to implement microscale magnetic immunoassay through modulating the local magnetic field towards enhanced capture and distribution of rare cancer cells.

"The concept is to use novel cell-machine interfaces, integrated sensing, actuation, and biomarker recognition functionalities to isolate these rare cells (one per billion hematologic cells) from whole blood to determine malignancy unambiguously," said senior author Dr. John X.J Zhang, professor of engineering at Dartmouth College. "We will base the quantitative assessment on multiple tumor markers. This project demonstrates that a relatively simple blood test may eventually be able to provide unambiguous information to doctors about particular cancers in individuals."

The investigators found that there was good agreement between their theory and results of experiments using a human colon cancer cell line (COLO205) as the capture targets.

Related Links:

Dartmouth College



Platinum Member
Xylazine Immunoassay Test
Xylazine ELISA
Verification Panels for Assay Development & QC
Seroconversion Panels
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
D-Dimer Test
Epithod 616 D-Dimer Kit
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.