Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




The Captureseq Technique Is More Accurate for Low Expressing Genes and Long Non-Coding RNAs

By LabMedica International staff writers
Posted on 24 Mar 2015
The powerful new CaptureSeq technique for gene analysis was shown to be superior for detecting and quantifying genes with low expression while showing little technical variation and accurately measured differential expression of long non-coding RNAs (lncRNAs).

Long non-coding RNAs (long ncRNAs, lncRNA) are non-protein coding transcripts longer than 200 nucleotides. More...
This somewhat arbitrary limit distinguishes lncRNAs from small regulatory RNAs such as microRNAs (miRNAs), short interfering RNAs (siRNAs), Piwi-interacting RNAs (piRNAs), small nucleolar RNAs (snoRNAs), and other short RNAs. LncRNAs have been found to be involved in numerous biological roles including imprinting, epigenetic gene regulation, cell cycle and apoptosis, and metastasis and prognosis in solid tumors. Most lncRNAs are expressed only in a few cells rather than whole tissues, or they are expressed at very low levels, making them difficult to study.

RNA sequencing (RNAseq) samples the majority of expressed genes infrequently, owing to the large size, complex splicing and wide dynamic range of eukaryotic transcriptomes. This results in sparse sequencing coverage that can hinder robust isoform assembly and quantification. RNA capture sequencing (CaptureSeq) addresses this challenge by using oligonucleotide probes to capture selected genes or regions of interest for targeted sequencing. The method involves enriching transcripts of interest by hybridizing them to magnetic bead-linked oligonucleotides that are tiled across the region of interest, allowing for targeted purification, multiplexed library preparation, and RNA sequencing at a high depth.

Investigators at the Garvan Institute of Medical Research (Sydney, Australia) recently compared quantitative real time-PCR (qRT-PCR), RNA-sequencing (RNAseq), and capture sequencing (CaptureSeq) in terms of their ability to assemble and quantify lncRNAs and novel coding exons across 20 human tissues.

They reported in the March 9, 2015, online edition of the journal Nature Methods that CaptureSeq achieved eightfold better sequence coverage for all standard concentrations tested, corresponding to the assembly of as few as 1,550 transcripts in the input RNA. In contrast, RNAseq could not reliably detect low standard concentrations, precluding the measurement of low-abundance standards. In the human leukemia cell line K562, an estimated 42.1% of RNA transcripts were better quantified using CaptureSeq. RNAseq and CaptureSeq performed similarly for 53.2% of transcripts.

While RNAseq performed better than CaptureSeq for the most highly expressed 4.6% of transcripts enriched for housekeeping, structural, and metabolic genes, genes with low expression in K562 cells for which CaptureSeq provided superior quantitative accuracy were enriched for transcription factors and genes associated with cancer or other human diseases.
Finally, the investigators identified 13,796 loci that generated 45,399 lncRNA isoforms, of which 27,596 were previously unknown, with 20.6% more exons and 13.5% more introns compared with previous annotations.

Related Links:
Garvan Institute of Medical Research



Platinum Member
Xylazine Immunoassay Test
Xylazine ELISA
Verification Panels for Assay Development & QC
Seroconversion Panels
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
Automated Staining Unit
RAL Stainer
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.