We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Bacteriophage Therapy Eliminates Multidrug Resistant Bacterial Infections

By LabMedica International staff writers
Posted on 01 Mar 2015
Bacteriophage therapy has been shown to be an effective approach for treating infections caused by drug-resistant strains of the bacterium Enterococcus faecalis.

E. More...
faecalis, a bacterium inhabiting the gastrointestinal tracts of humans, is an important pathogen found in many infections including endocarditis, urinary tract infection, meningitis, and persistent infections associated with root canal treatment failure. The difficulty in E. faecalis treatment has been attributed to the lack of anti-infective strategies to eradicate its biofilm and to the frequent emergence of multidrug resistant strains.

Investigators at the Hebrew University of Jerusalem (Israel) evaluated the possibility of treating E. faecalis infections with specific bacteriophages, viruses that infect and destroy bacteria. To this end, they isolated an anti-E. faecalis and E. faecium phage, from effluents obtained from a Jerusalem (Israel), sewage treatment facility.

The EFDG1phage was visualized by electron microscopy. EFDG1 DNA coding sequences and phylogeny were determined by whole genome sequencing, which revealed that it belonged to the Spounavirinae subfamily of the Myoviridae phages, which includes promising candidates for therapy against Gram positive pathogens. This analysis also showed that the EFDG1 genome did not contain apparent harmful genes.

EFDG1 antibacterial efficacy was evaluated in vitro against planktonic and biofilm cultures. Results published in the February 6, 2015, online edition of the journal Applied and Environmental Microbiology showed that the phage displayed effective lytic activity against various E. faecalis and E. faecium isolates, regardless of their antibiotic resistance profile. Additionally, EFDG1 efficiently prevented ex vivo E. faecalis root canal infection.

Senior author Dr. Ronen Hazan, professor of dental sciences at the Hebrew University of Jerusalem, said, “The idea of using phages as antibacterial drugs is not new. Phage therapy was first proposed at the start of the 20th century, but then abandoned for various reasons, including the striking success of chemical antibiotics. Now we stand on the verge of a new era with the limitations of synthetic antibiotics and the emergence of antibiotic-resistant strains of bacteria. Thus it is the right time to look again into what Mother Nature offers in the battle against bacteria. As this research shows, bacteriophages may prove an effective tool in the development of much-needed new antimicrobial drugs.”

Hebrew University of Jerusalem

Related Links:

Platinum Member
ADAMTS-13 Protease Activity Test
ATS-13 Activity Assay
Verification Panels for Assay Development & QC
Seroconversion Panels
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
Blood Glucose Reference Analyzer
Nova Primary
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.