We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ZeptoMetrix an Antylia scientific company

Download Mobile App




Culture-Based High Throughput Screen Detects Potent Anti-Ovarian Cancer Drugs

By LabMedica International staff writers
Posted on 23 Feb 2015
Cancer researchers have developed a high throughput system for screening drugs against ovarian tumors that is based on inhibition of cancer cells growing in a three-dimensional culture system.

Most high throughput screening (HTS) assays for drug discovery use cancer cells grown in monolayers despite the fact that the tumor microenvironment is known to contribute to cancer metastasis and drug resistance. More...
To incorporate the tumor microenvironment into the drug screening process, investigators at the University of Chicago (IL, USA) coated the wells of 384- and 1,536-well microtiter plates with a multilayered cellular mixture containing primary human fibroblasts, mesothelial cells, and extracellular matrix. Cultures of fluorescently labeled ovarian cancer cells from three different lines (HeyA8, SKOV3ip1, and Tyk-nu) were added to the wells and then exposed to a library of small-molecule compounds. The numbers of adhering and invasive ovarian cancer cells were counted, and the inhibitory potential of each compound evaluated.

Results published in the February 5, 2015, online edition of the journal Nature Communications revealed that in the initial screen of 2,420 compounds there were 17 compounds that inhibited cell adhesion and invasion by at least 75%. Six of these compounds were active in a dose-response relationship in all three ovarian cancer cell lines, and four compounds significantly inhibited key ovarian cancer cell functions in the early steps of metastasis at low doses. One of the compounds, beta-escin, which is isolated from the seeds of the Chinese horse chestnut, was found to inhibit tumor growth and metastasis by 97%.

"Visualizing how cancer cells interact with a tumor microenvironment that accurately reflects the complex biology of ovarian cancer should help us understand the mechanisms underlying metastatic progression as well as identify new therapeutics that can inhibit this process," said senior author Dr. Ernst Lengyel, professor of obstetrics and gynecology at the University of Chicago. "We think this novel screening system has the potential to uncover new, more effective medications that could be targeted more specifically at a patient's cancer."

Related Links:

University of Chicago



Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Verification Panels for Assay Development & QC
Seroconversion Panels
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
High-Density Lipoprotein Containing Cholesterol Assay
HDL-c direct FS
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.