Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ZeptoMetrix an Antylia scientific company

Download Mobile App




Stem Cell Therapy Cures Diabetes in Mouse Model

By LabMedica International staff writers
Posted on 08 Feb 2015
Diabetes researchers modified human skin cells to produce insulin and showed that after being injected into diabetic immunodeficient mice, the cells developed into an insulin-producing organoid capable of modulating the animals' glucose metabolism.

In type I diabetes, the individual's immune system attacks and destroys the pancreatic beta cells that produce insulin. More...
While pancreas transplants from cadavers can be used to treat the disorder, the very small number of available organs limits usefulness of this method.

In a different approach, investigators at the University of Iowa (Iowa City, USA) modified human skin cells to create induced pluripotent stem (iPS) cells. The undifferentiated iPS cells were subjected to differentiation using a multistep protocol to generate insulin producing cells (IPCs) in vitro. The successful differentiation of human iPS cells into IPCs was validated by real-time quantitative PCR, immunostaining, transmission electron microscopy, and mitochondria stress tests.

The IPCs were injected into streptozotocin-induced diabetic immunodeficient mice under the kidney capsule, a thin membrane layer that surrounds the kidney. The real-time fate of the transplanted IPCs was monitored by MRI, which revealed the presence of an organoid on the kidneys of the mice that received IPCs. These organoids showed neo-vascularization and stained positive for insulin and glucagon. The animals' serum glucose levels gradually declined to either normal or near normal levels over 150 days, suggesting that the IPCs were secreting insulin. Furthermore, none of the mice that had received IPCs developed tumors from the transplanted stem cells.

"This raises the possibility that we could treat patients with diabetes with their own cells," said senior author Dr. Nicholas Zavazava, professor of internal medicine at the University of Iowa. "That would be a major advance, which will accelerate treatment of diabetes."

The study was published in the January 28, 2015, online edition of the journal PLOS ONE.

Related Links:

University of Iowa



Platinum Member
Xylazine Immunoassay Test
Xylazine ELISA
Verification Panels for Assay Development & QC
Seroconversion Panels
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
Parainfluenza Virus Test
PARAINFLUENZA ELISA
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.