Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ZeptoMetrix an Antylia scientific company

Download Mobile App




New Software Uses X-Ray Diffraction to Generate 3-D Images of Molecular Machines

By LabMedica International staff writers
Posted on 05 Jan 2015
Scientists are making it simpler for pharmaceutical companies and researchers to visualize the precise inner processes of molecular machines.

“Inside each cell in our bodies and inside every bacterium and virus are tiny but complex protein molecules that synthesize chemicals, replicate genetic material, turn each other on and off, and transport chemicals across cell membranes,” said Tom Terwilliger, a US Department of Energy (DOE) Los Alamos National Laboratory (Los Alamos, NM, USA) scientist. More...
“Understanding how all these machines work is the key to developing new therapeutics, for treating genetic disorders, and for developing new ways to make useful materials.”

These molecular machines are very minute: a million of them positioned side-by-side would take up less than an inch of space. Researchers can see them however, using X-rays, crystals, and computers. Researchers produce billions of copies of a protein machine, dissolve them in water, and grow crystals of the protein, similar to growing sugar crystals except that the machines are larger than a sugar molecule.

After that, the scientists shined a beam of X-rays at a crystal and measure the brightness of each of the thousands of diffracted X-ray spots that are produced. Then researchers use the powerful Phenix software, developed by scientists at Los Alamos, Lawrence Berkeley National Laboratory (LBNL; Berkeley, CA, USA), Duke (Durham, NC, USA), and Cambridge Universities (UK), to analyze the diffraction spots and produce a three-dimensional (3-D) image of a single protein machine. This image shows the researchers precisely how the protein machines are constructed.

Recently, Los Alamos scientists worked with their colleagues at LBNL and Cambridge University to make it even easier to visualize a molecular machine. In a report published online December 22, 2014, in the journal Nature Methods, Los Alamos scientists and their colleagues demonstrated that they captured 3D images of molecular machines using X-ray diffraction spots that could not previously be analyzed.

Some molecular machines contain a few metal atoms or other atoms that diffract X-rays differently than the carbon, oxygen, nitrogen, and hydrogen atoms that comprise most of the atoms in a protein. The Phenix software locates those metal atoms first, and then uses their locations to find all the other atoms. For most molecular machines, however, metal atoms have to be incorporated into the machine artificially to make this all work.

The key new advance to which Los Alamos scientists have contributed was revealing that useful statistical techniques could be applied to find metal atoms even if they do not scatter X-rays very differently than all the other atoms. Even metal atoms such as sulfur that are naturally part of nearly all proteins can be found and used to generate a 3-D picture of a protein. Now that it will often be possible to see a three-dimensional picture of a protein without artificially integrating metal atoms into them, many more molecular machines can be examined.

Molecular machines that have recently been seen in 3-D detail include a massive molecular machine called Cascade that will be reported in the journal Science later in 2015. The Cascade machine is present in bacteria and can recognize DNA that comes from viruses that infect the bacteria. The Cascade machine is comprised of 11 proteins and an RNA molecule and looks similar to a seahorse, with the RNA molecule snaking through the whole ‘body’ of the seahorse. If a foreign piece of DNA in the bacterial cell is complementary to part of the RNA molecule then another specialized machine can come by and cut up the foreign DNA, saving the bacterium from infection.

Los Alamos and Cambridge University scientists who were developing the Phenix software were part of the team that visualized this protein machine for the first time. The Phenix software has been used to determine the 3-D shapes of over 15,000 different protein machines and has been cited by over 5,000 scientific publications.

Related Links:

Los Alamos National Laboratory



Platinum Member
ADAMTS-13 Protease Activity Test
ATS-13 Activity Assay
Verification Panels for Assay Development & QC
Seroconversion Panels
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
D-Dimer Test
Epithod 616 D-Dimer Kit
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.