Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Synthetic Peptide Drug Overcomes Bacterial Resistance to Antibiotics

By LabMedica International staff writers
Posted on 23 Dec 2014
A team of molecular microbiologists has demonstrated the potential value of engineered cationic antibiotic peptides (eCAPs) for treating infections caused by bacteria that have developed resistance to traditional antibiotics.

Cationic antimicrobial peptides (CAPs) are amphipathic peptides of 12–50 amino acids with a net positive charge. More...
They are ubiquitous peptides naturally found in all living species and are known to be active components of the innate immunity against infectious pathogens. In response to infectious pathogens, CAPs can be released from macrophages, granules of neutrophils, or with mucosal and skin secretions from epithelial cells. CAPs can act against a wide range of targets including gram-positive and gram-negative bacteria, fungi, and parasites. The only essential component in these targets is a negatively charged plasma membrane. Therefore, normal cells have a relative resistance due to the peptides preference for negatively charged, cholesterol free membranes.

The mechanism of action of CAPs is not fully understood, although studies have implicated the electrostatic interaction between the peptides and the lipid molecules on the bacterial membrane. When compared to other antibiotics, CAPs are able to kill bacteria rapidly, within 30 to 180 seconds, limiting the bacterium’s ability to develop resistance against these peptides. Therefore, CAPs are considered a good candidate for use against multi-drug resistance (MDR) bacteria. Engineered cationic antimicrobial peptides or eCAPs represent a subclass that is chemically synthesized in a laboratory setting.

Investigators at the University of Pittsburgh School of Medicine (PA, USA) compared two eCAPs, WLBU2 and WR12, to the natural antimicrobial peptide LL37 and to the standard antibiotic colistin for the ability to overcome resistance to antibiotics.

In this study the investigators worked with 100 different bacterial strains isolated from the lungs of pediatric cystic fibrosis patients from Seattle Children's Hospital and 42 bacterial strains isolated from hospitalized adult patients at the University of Pittsburgh School of Medicine.

Results published in the November 24, 2014, online edition of the journal Antimicrobial Agents and Chemotherapy revealed that while LL37 and colistin each inhibited growth of about 50% of the clinical isolates (indicating a high level of bacterial resistance to these drugs), the two eCAPS inhibited growth in about 90% of the test bacterial strains.

"Very few, if any, medical discoveries have had a larger impact on modern medicine than the discovery and development of antibiotics," said senior author Dr. Ronald C. Montelaro, professor of microbiology and molecular genetics at the University of Pittsburgh School of Medicine. "However, the success of these medical achievements is being threatened due to increasing frequency of antibiotic resistance. It is critical that we move forward with development of new defenses against the drug-resistant bacteria that threaten the lives of our most vulnerable patients."

"We were very impressed with the performance of the eCAPs when compared with some of the best existing drugs, including a natural antimicrobial peptide made by Mother Nature and an antibiotic of last resort," said Dr. Montelaro. "However, we still needed to know how long the eCAPs would be effective before the bacteria develop resistance. We plan to continue developing the eCAPs in the lab and in animal models, with the intention of creating the least-toxic and most effective version possible so we can move them to clinical trials and help patients who have exhausted existing antibiotic options."

Related Links:

University of Pittsburgh School of Medicine



Platinum Member
ADAMTS-13 Protease Activity Test
ATS-13 Activity Assay
Verification Panels for Assay Development & QC
Seroconversion Panels
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
Melanoma Panel
UltraSEEK Melanoma Panel
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.