Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Holographic Haptic Shapes Realized Using Ultrasound

By LabMedica International staff writers
Posted on 17 Dec 2014
Technology has quickly changed recently with touch feedback, known as haptics, being used in rehabilitation, entertainment, and even surgical training. More...
New research, using ultrasound, has created an invisible three-dimensional (3-D) haptic shape that can be both seen and felt.

The study’s findings, published in the December 2014 issue of ACM Transactions on Graphics, and which was presented at the SIGGRAPH Asia 2014 Conference, held December 3–6, in Shenzhen (China), demonstrated how a holographic technology has been created to produce 3-D shapes that can be felt in mid-air.

The research, led by Dr. Ben Long and colleagues Prof. Sriram Subramanian, Sue Ann Seah, and Tom Carter from the University of Bristol’s (UK) department of computer science, could change the way 3D shapes are used. The new technology could enable surgeons to study a computed tomography (CT) scan by enabling them to feel a disease, such as a tumor, using haptic feedback.

The technology uses ultrasound, which is focused onto hands above the device and that can be felt. By focusing complicated patterns of ultrasound, the air disturbances can be seen as floating 3-D shapes. The investigators have visually demonstrated the ultrasound patterns by directing the device at a thin layer of oil so that the depressions in the surface can be seen as spots when lit by a lamp. The system generates an invisible 3-D shape that can be added to 3-D displays to create something that can be seen and felt. The researchers have also shown that users can match a picture of a 3-D shape to the shape created by the system.

Dr. Ben Long, research assistant from the Bristol Interaction and Graphics (BIG) group in the department of computer science, said, “Touchable holograms, immersive virtual reality that you can feel and complex touchable controls in free space, are all possible ways of using this system. In the future, people could feel holograms of objects that would not otherwise be touchable, such as feeling the differences between materials in a CT scan or understanding the shapes of artefacts in a museum.”

Related Links:

University of Bristol



Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Verification Panels for Assay Development & QC
Seroconversion Panels
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
NEW PRODUCT : SILICONE WASHING MACHINE TRAY COVER WITH VICOLAB SILICONE NET VICOLAB®
REGISTRED 682.9
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.