Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ZeptoMetrix an Antylia scientific company

Download Mobile App




Parkinson's Disease Linked to Malfunctions in Mitochondrial Fission and Fusion

By LabMedica International staff writers
Posted on 16 Nov 2014
Neurodegenerative diseases researchers in the United Kingdom have found that development of Parkinson's disease (PD) is linked to malfunctions in the processes that regulate mitochondrial fission and fusion.

Mitochondrial dysfunction has been reported in both the familial and sporadic forms of PD. More...
Mitochondria are constantly fusing and dividing with each other, forming large, reticular networks. To study the molecular regulators of these processes, investigators at Plymouth University (United Kingdom) used two complementary mouse models of mitochondrial impairments as seen in PD: the PTEN-induced putative kinase-1 deletion (PINK1−/−) and the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse models.

They reported in the November 5, 2014, online edition of the journal Nature Communications that blocking the action of the mitochondrial fission protein GTPase dynamin-related protein-1 (Drp1) using either gene-therapy or a chemical approach reduced both cell death and deficits in dopamine release, which effectively reversed PD progression in both models.

Drp1 is a member of the Dynamin enzyme family of large GTPases. Drp1 controls the final part of mitochondrial fission, pinching off the membrane stalk between two forming daughter mitochondria. Several studies have indicated that Drp1 is essential for proper embryonic development, and that in humans, loss of Drp1 function affects brain development and is also associated with early mortality.

Senior author Dr. Kim Tieu, associate professor of clinical neurobiology at Plymouth University, said, "Our findings show exciting potential for an effective treatment for PD and pave the way for future in-depth studies in this field. It is worth noting that other researchers are also targeting this mitochondrial fission/fusion pathway as potential treatments for other neurological diseases such as Alzheimer's disease, Huntington's disease and Amyotrophic Lateral Sclerosis."

Related Links:

Plymouth University



Platinum Member
ADAMTS-13 Protease Activity Test
ATS-13 Activity Assay
Verification Panels for Assay Development & QC
Seroconversion Panels
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
Melanoma Panel
UltraSEEK Melanoma Panel
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.