Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ZeptoMetrix an Antylia scientific company

Download Mobile App




Force-Sensing Microbots Designed to Probe Cells

By LabMedica International staff writers
Posted on 23 Oct 2014
Microrobots that have the capability of probing and engineering individual cells and tissue for biological research and medical applications are being constructed with technology that senses the minuscule forces exerted by a robot’s tiny probe. More...


Microrobots small enough to interact with cells already exist. However, there is no easy, inexpensive way to measure the small forces applied to cells by the robots. Measuring these microforces is vital to precisely control the bots and to use them to study cells. “What is needed is a useful tool biologists can use every day and at low cost,” said David Cappelleri, an assistant professor of mechanical engineering at Purdue University (West Lafayette, IN, USA).

Researchers now have devised and constructed a “vision-based micro-force sensor end-effector,” which is attached to the microrobots similar to a tiny proboscis. A camera is used to measure the probe’s displacement while it pushes against cells, allowing a simple calculation that reveals the force applied.

The new strategy could make it possible to easily measure the micronewtons of force applied at the cellular level. Such a tool is needed to better study cells and to understand how they interact with microforces. The forces can be used to convert cells into specific cell lines, including stem cells for research and medical applications. Moreover, the measurement of microforces can be used to examine how cells respond to specific drugs and to diagnose disease.

“You want a device that is low-cost, that can measure micronewton-level forces and that can be easily integrated into standard experimental test beds,” Dr. Cappelleri said. Microrobots used in research are controlled with magnetic fields to move them into place. “But this is the first one with a truly functional end effector to measure microforces,” he said.

The study’s findings were presented during the International Conference on Intelligent Robots and Systems, held in Chicago (IL, USA), September 14–18, 2014.

The new system is combined with the microrobot is about 700 micrometers square, and the researchers are working to create versions about 500 micrometers square. “We are currently working on scaling it down,” Dr. Cappelleri said.

Future research, according to the investigators, also may concentrate on automating the microrobots. The system was fabricated at the Birck Nanotechnology Center in Purdue’s Discovery Park.

Related Links:

Purdue University



Platinum Member
ADAMTS-13 Protease Activity Test
ATS-13 Activity Assay
Verification Panels for Assay Development & QC
Seroconversion Panels
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
DNA Extraction Kit
MagMAX DNA Multi-Sample Ultra 2.0 Kit
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.