Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ZeptoMetrix an Antylia scientific company

Download Mobile App




Infection by Meningitis Bacteria Depends on Dimerization State of Certain Host Cell Proteins

By LabMedica International staff writers
Posted on 15 Oct 2014
A team of molecular microbiologists has untangled the complex three-way interaction between the non-integrin laminin receptor (LAMR1), galectin-3 (Gal-2), and the pathogenic bacterium Neisseria meningitidis.

Neisseria meningitidis, the causative agent of meningococcal meningitis, is found in the nasopharynx of humans but not in other animals. More...
How this organism interacts and invades tissues has been of great interest to medical microbiologists. In the current study, investigators at The University of Nottingham (United Kingdom) examined the roles of two host cell-surface proteins, Galectin-3 and laminin receptor 1, in the process of infection.

Galectin-3 (Gal-3) is one of the 14 recognized mammalian lectins. This protein weighs approximately 30 kDa and, like all galectins, contains a carbohydrate-recognition-binding domain of about 130 amino acids that enables the specific binding of beta-galactosides. Gal-3 is expressed in cells in the nucleus, cytoplasm, mitochondrion, cell surface, and extracellular space. This protein has been shown to be involved in cell adhesion, cell activation and chemoattraction, cell growth and differentiation, cell cycle, and apoptosis. Gal-3 recognizes the Thomsen-Friedenreich disaccharide (TFD, galactose-N-acetylgalactosamine) that is present on the surface of most cancer cells and is involved in promoting angiogenesis, tumor-endothelial cell adhesion, and metastasis of prostate cancer cells, as well as evading immune surveillance through killing of activated T-cells.

Laminins, a family of extracellular matrix glycoproteins, are the major noncollagenous constituent of basement membranes. They have been implicated in a wide variety of biological processes including cell adhesion, differentiation, migration, signaling, and metastasis. Many of the effects of laminin are mediated through interactions with cell surface receptors. These receptors include members of the integrin family, as well as non-integrin laminin-binding proteins. The ribosomal protein SA gene encodes a high-affinity, non-integrin family, laminin receptor 1 (LAMR1). This receptor has been variously called 67-kDa laminin receptor, 37-kDa laminin receptor precursor (37LRP) and p40 ribosome-associated protein. The amino acid sequence of laminin receptor 1 is highly conserved through evolution, suggesting a key biological function.

In their paper, which was published in the October 1, 2014, online edition of the journal Open Biology, the investigators described using advanced bimolecular fluorescence and confocal imaging techniques to show that Gal-3 and LAMR1 formed homo- and heterodimers, and that each isotype formed a distinct cell surface population. The 37-kDa form of LAMR1 (37LRP) was the precursor of the previously described 67-kDa laminin receptor (67LR), whereas the heterodimer represented an entity that was distinct from this molecule. Site-directed mutagenesis confirmed that the single cysteine (C173) of Gal-3 or lysine (K166) of LAMR1 were critical for heterodimerization. Recombinant Gal-3, expressed in normally Gal-3-deficient N2a cells, dimerized with endogenous LAMR1 and led to a significantly increased number of internalized bacteria, confirming the role of Gal-3 in bacterial invasion.

Contributing author Dr. Karl Wooldridge, associate professor of microbiology at The University of Nottingham, said, “We have shown evidence for the self and mutual association of these two important proteins and their distinctive surface distribution on the human cell. We have also demonstrated that they are targeted by the serious human pathogen Neisseria meningitidis. This is significant because these proteins could potentially be used to develop new vaccines and treatments which could sabotage the colonization of these dangerous bacteria, and also which could protect the blood-brain barrier which is disrupted in cases of bacterial meningitis.”

Related Links:

The University of Nottingham



Platinum Member
ADAMTS-13 Protease Activity Test
ATS-13 Activity Assay
Verification Panels for Assay Development & QC
Seroconversion Panels
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
Pipette Controller
Sapphire MaxiPette
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.