We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Big Data Consortium to Advance Neuromuscular Disease Research

By LabMedica International staff writers
Posted on 05 Oct 2014
A five-center consortium has been initiated in the United States to gather and analyze thousands of bits of data to develop a global outlook of neuromuscular disorders.

Investigators from the Cedars-Sinai (Los Angeles, CA, USA) Board of Governors Regenerative Medicine Institute reported that have received a grant from the US National Institutes of Health (NIH; Bethesda, MD, USA) to participate in a consortium taking the study of motor neuron disorders—such as Lou Gehrig’s disease and spinal muscular atrophy—to a new, comprehensive outlook.

“We will be working as part of an NIH initiative to create databases of disease ‘signatures’ by generating and analyzing thousands of data points. More...
Scientists often focus on very small things, such as a single signaling pathway in cells or a single gene or protein that is involved in some way with disease development, but identifying and correcting one component rarely leads to a cure. This is especially true in the brain because its networks are very complex,” said Clive Svendsen, PhD, professor and director of the Board of Governors Regenerative Medicine Institute, and lead investigator of Cedars-Sinai’s part of the study.

Dr. Svendsen compares this change in perspective to the way meteorologists began predicting weather—viewing global trends and collecting huge amounts of data to create a forecast for a specific place and time. The grant is part of an NIH initiative called the Library of Integrated Network-based Cellular Signatures (LINCS) program, which has a goal to develop a “library’ of molecular signatures that describes how different cells respond to proteins, genes, chemicals—basically anything that may come in contact with or alter the cell or its activity.

Cedars-Sinai is a member of a group, NeuroLINCS, studying motor neuron disorders, which include Lou Gehrig’s disease, also known as amyotrophic lateral sclerosis (ALS) and spinal muscular atrophy. The NeuroLINCS study will be coordinated by researchers at the University of California, Irvine (USA), with additional collaborators at the Gladstone Institutes at the University of California, San Francisco (USA), Johns Hopkins University (Baltimore, MD, USA), and the Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard (Cambridge, MA, USA).

NeuroLINCS is one of six consortiums recently funded through NIH’s LINCS program to study diabetes, cancers and other diseases using cell lines and specialized stem cells called induced pluripotent stem cells.

The Board of Governors Regenerative Medicine Institute, which has developed a national reputation for the quality of its induced pluripotent stem cells, was asked to provide the stem cells for all of the consortiums. The cells are generated in the Regenerative Medicine Institute’s induced pluripotent stem cell core facility, directed by Dhruv Sareen, PhD, assistant professor of biomedical sciences and faculty research scientist with the department of biomedical sciences.

Cedars-Sinai and the Regenerative Medicine Institute also will play a major role in the data generation phase of the study. New technology enables scientists to “mine” data on a large scale, such as measuring millions of proteins in only one sample—an area of expertise for Jennifer Van Eyk, PhD, director of Cedars-Sinai’s Advanced Clinical Biosystems Research Institute. She will be co-lead investigator of Cedars-Sinai’s part of the study and will provide protein analysis for all NeuroLINCS collaborators. Other experts will collect data on genetic material and the way genetic information is relayed to proteins within cells.

Dr. Svendsen reported that the data analysis groups will collaborate to create computer programs to combine all the data together. “We may be looking at many thousands of data points, but using algorithms to create a ‘cloud’ of information, we expect to see a ‘signature’ emerge that shows us the relationships between proteins, genes and RNA in the cell. There will be a specific signature for healthy controls and a different one for the disease, such as Lou Gehrig’s,” Dr. Svendsen said. “Once we have that, we can try to ‘punch holes’ in the disease signature by hitting the cell with a small molecule to see how the cloud of information changes. The ultimate goal is to morph the disease cloud back into a healthy cloud. But right now, we don't know what the disease state is. This is what we want to find out.”

At Cedars-Sinai, Drs. Svendsen and Sareen frequently collaborate on ALS and other motor neuron disease studies with Robert H. Baloh, MD, PhD, director of neuromuscular medicine and the ALS Program in the department of neurology. “We have a strong mutual interest in developing personalized medicine for patients suffering from neurodegenerative diseases,” Dr. Svendsen said. “We want to be able to create in a dish the motor neurons that mirror an individual patient's disease so we can see how quickly or slowly degeneration occurs. We also want to be able to interact with the disease model and see if we can slow it down in the dish. If so, theoretically, we should be able to slow it down in the patient as well. Through the LINCS grant, big data technology enables us to explore motor neurons in greater detail and gives us a much more sophisticated way of producing and analyzing these personalized models.”

Related Links:

Cedars-Sinai



Platinum Member
Xylazine Immunoassay Test
Xylazine ELISA
Verification Panels for Assay Development & QC
Seroconversion Panels
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
Spinal Fluid Cell Count Control
Spinalscopics
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.