We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Innovative Technique Produces More Reliable Pluripotent Stem Cells

By LabMedica International staff writers
Posted on 01 Oct 2014
A recent paper described a more reliable way to induce the formation of pluripotent stem cells (iPSCs) from adult cells in a mouse model.

Reliable high-quality iPSCs are needed for the development of therapeutic applications. More...
Induced pluripotent stem cells are commonly generated by transduction of the "OSKM" genes into cells for the production of the reprogramming factors Oct4 (octamer-binding transcription factor 4), Sox2 (sex determining region Y)-box 2), Klf4 (Krueppel-like factor 4), and Myc (v-myc myelocytomatosis viral oncogene homolog protein). Although such iPSCs are pluripotent, they frequently exhibit high variation in terms of quality, as measured in mice by chimera contribution and tetraploid complementation.

Investigators at the Hebrew University of Jerusalem (Israel) used bioinformatic analysis to design a new formulation of transducer genes that generated high-quality iPSCs more efficiently than other combinations of factors including OSKM. The new cocktail of reprogramming factors (SNEL) included Sall4 (Sal-like protein 4), Nanog (Nanog homeobox), Esrrb (Estrogen-related receptor beta), and Lin28 (Lin-28 homolog A).

The new SNEL cocktail created fewer iPSC colonies than the traditional OSKM approach, but approximately 80% of those produced passed the most stringent pluripotency tests. This is preferable to the OSKM method, which produces a large number of colonies, but the majority of which fail the pluripotency tests.

First author Dr. Yossi Buganim, a postdoctoral researcher in developmental biology at the Hebrew University of Jerusalem, said, "SNEL may reprogram cells better than OSKM because it does not rely on the master regulators Oct4 and Sox2, which might activate part of the adult cell genome. This research demonstrates the effectiveness of bioinformatics tools in producing high quality iPSCs."

Related Links:
Hebrew University of Jerusalem



Platinum Member
Xylazine Immunoassay Test
Xylazine ELISA
Verification Panels for Assay Development & QC
Seroconversion Panels
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
ESR Analyzer
miniiSED™
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.