We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ZeptoMetrix an Antylia scientific company

Download Mobile App




Novel Antibiotic Shows Potential for Broad Range of Infections

By LabMedica International staff writers
Posted on 23 Sep 2014
The emergence of bacterial resistance to known antibacterial agents is becoming a major challenge in treating the infection caused by multi drug resistant (MDR) bacteria. More...


In order to treat bacterial infections, especially those caused by MDR bacteria, new antibacterial agents are needed that can overcome bacterial resistance, as many more patients die of other conditions complicated by infection with resistant pathogens.

Scientists from Shionogi & Co., Ltd (Osaka, Japan) found that S-649266, which is a parenteral siderophore cephalosporin with a novel mechanism for bacterial cell entry and improved stability to carbapenemases, demonstrates potent activity against a wide variety of Gram-negative pathogens that are resistant to available antibacterials.

The team conducted animal and laboratory studies that found that S-649266 had more robust antibacterial activity than established antibiotics, including ceftazidime and cefepime, against multidrug-resistant Pseudomonas (MDRP), MDR Acinetobacter (MDRA) and carbapenem-resistant Enterobacteriaceae (CRE). They also showed that S-649266 has high stability to serine- and metallo-type carbapenemases. The investigators noted that S-649266 has shown potent efficacy against MDRP and MDRA in rat lung infection models that mimicked human exposure profiles when administered twice daily in an hour-long infusion. The antibiotic has additionally been found to be safe and well tolerated in healthy volunteers in single- and multiple-dose phase 1 studies. S-649266, which was developed by Shionogi, is currently undergoing phase 2 testing. Phase 3 testing is expected to start next year.

Yoshinori Yamano, PhD, vice president, Discovery Research Laboratory for Core Therapeutic Areas at Shionogi said, “S-649266 works via a ‘Trojan horse’ strategy in which a novel siderophore moiety may significantly improve the antibacterial activity by facilitating efficient transport of S-649266 into the bacterium. The use of the iron uptake system may allow S-649266 to effectively treat Gram-negative bacterial infections that are resistant to presently available antibiotics.” Richard P. Wenzel, MD, MSc, a professor of Medicine and former president of the International Society for Infectious Diseases, commented “Multidrug-resistant rod-shaped bacteria are the key threat in hospitals today, and S-649266 is a promising antibiotic to treat these superbugs.” The study was presented at the 54th Interscience Conference on Antimicrobial Agents and Chemotherapy held September 5–9, 2014, in Washington DC (USA).

Related Links:

Shionogi & Co., Ltd.



Platinum Member
ADAMTS-13 Protease Activity Test
ATS-13 Activity Assay
Verification Panels for Assay Development & QC
Seroconversion Panels
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
Pipette Controller
Sapphire MaxiPette
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.