We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ZeptoMetrix an Antylia scientific company

Download Mobile App




Surface Protein Protects Brain Tumor Cells from Immune Attack

By LabMedica International staff writers
Posted on 19 Aug 2014
Malignant glioma brain tumor cells suppress the natural killer cell (NK) immune response by over expressing the surface protein galectin-1, and suppression of this protein renders the tumor cells susceptible to destruction by the immune system.

Galectin-1 (LGALS1 lectin, galactoside-binding, soluble, 1) is a member of the galectin family of beta-galactoside-binding proteins, which has been implicated in modulating cell-cell and cell-matrix interactions. More...
This protein may act as an autocrine negative growth factor that regulates cell proliferation. Autocrine signaling is a form of cell signaling in which a cell secretes a hormone or chemical messenger (called the autocrine agent) that binds to autocrine receptors on that same cell, leading to changes in the cell.

Investigators at the University of Michigan (Ann Arbor, USA) had been studying gliomas, which make up about 80% of all malignant brain tumors, including anaplastic oligodendrogliomas, anaplastic astrocytomas, and glioblastoma multiforme.

In the current study, they used rodent models to demonstrate that malignant glioma cells suppressed NK immune surveillance by over expressing galectin-1. Conversely, galectin-1 deficient glioma cells could be eradicated by host NK cells prior to the initiation of an anti-tumor T-cell response. Results of in vitro experiments published in the July 18, 2014, online edition of the journal Cancer Research demonstrated that galectin-1 deficient GL26-Cit glioma cells were nearly three times more sensitive to NK-mediated tumor lysis than galectin-1 expressing cells.

“This is an incredibly novel and exciting development, and shows that in science we must always be open-minded and go where the science takes us; no matter where we thought we wanted to go,” said senior author Dr. Pedro Lowenstein, professor of neurosurgery at the University of Michigan. “In this case, we found that over-expression of galectin-1 inhibits the innate immune system, and this allows the tumor to grow enough to evade any possible effective T-cell response. By the time it is detected, the battle is already lost.”

Related Links:

University of Michigan



Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Verification Panels for Assay Development & QC
Seroconversion Panels
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
COVID-19 Antigen Self-Test
Panbio COVID-19 Antigen Self-Test
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.