We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ZeptoMetrix an Antylia scientific company

Download Mobile App




Gene Therapy Reactivates Cell Death Pathways in Cervical Cancer Cells

By LabMedica International staff writers
Posted on 18 Aug 2014
A team of molecular virologists has presented evidence demonstrating the possibility of developing anticancer therapies based on viral vectors that transfect carcinoma cells with RNA-protein complexes capable of reactivating genes in the cancer cells that cause cell cycle arrest and eventual cell death.

Investigators at Duke University (Durham, NC, USA) worked with human cervical cancers caused by the HPV-16 and HPV-18 serotypes of human papillomavirus (HPV). More...
Growth of HPV-induced cancers was known to depend on the two HPV oncogenes, E6 and E7. E6 induces degradation of the cellular tumor suppressor p53, while E7 destabilizes the retinoblastoma (Rb) protein.

Previous studies had shown that that loss of E6 function in cervical cancer cells induced p53 expression as well as downstream effectors that induced apoptosis and cell cycle arrest. Similarly, loss of E7 allowed increased Rb expression, leading to cell cycle arrest and senescence.

In the current study the investigators used an inactivated HPV vector to introduce the genes for a bacterial CRISPR/Cas9 RNA-guided endonuclease complex into the cervical cancer cells.

CRISPRs (Clustered Regularly Interspaced Short Palindromic Repeats) are loci containing multiple short direct repeats that are found in the genomes of approximately 40% of sequenced bacteria. CRISPR functions as a prokaryotic immune system, in that it confers resistance to exogenous genetic elements such as plasmids and phages. Short segments of foreign DNA, called spacers, are incorporated into the genome between CRISPR repeats, and serve as a "memory" of past exposures. CRISPR spacers are then used to recognize and silence exogenous genetic elements. Cas9 (CRISPR asssociated protein 9) is an RNA-guided DNA nuclease enzyme associated with the Streptococcus pyogenes CRISPR immunity system. Cas9 is widely used to induce site-directed double strand breaks in DNA, which can lead to gene inactivation or the introduction of heterologous genes. Along with engineered zinc finger nucleases and TALEN proteins, Cas9 has become a prominent tool in the field of genome editing.

The CRISPR/Cas9 complex used in this study was directed at the E6 and E7 genes. Results published in the August 6, 2014, online edition of the Journal of Virology revealed that expression of the bacterial Cas9 RNA-guided endonuclease, together with single guide RNAs (sgRNAs) specific for E6 or E7, was able to induce cleavage of the HPV genome, resulting in the introduction of inactivating deletion and insertion mutations into the E6 or E7 gene. This resulted in induction of p53 or Rb, leading to cell cycle arrest and eventual cell death. Both HPV-16- and HPV-18-transformed cells were found to be responsive to targeted HPV genome-specific DNA cleavage.

"As soon as you turn off E6 or E7, the host defense mechanisms are allowed to come back on again, because they have been there this whole time, but they have been turned off by HPV," said senior author Dr. Bryan R. Cullen, professor of molecular genetics and microbiology at Duke University. "What happens is the cell immediately commits suicide. What we would hope to see in an HPV-induced cancer is rapid induction of tumor necrosis caused by loss of E6 or E7. This method has the potential to be a single hit treatment that will dramatically reduce tumor load without having any effect on normal cells."

"Because this approach is only going after viral genes, there should be no off-target effects on normal cells," said Dr. Cullen. "You can think of this as targeting a missile that will destroy a certain target. You put in a code that tells the missile exactly what to hit, and it will only hit that, and it will not hit anything else because it does not have the code for another target."

Related Links:

Duke University



Platinum Member
ADAMTS-13 Protease Activity Test
ATS-13 Activity Assay
Verification Panels for Assay Development & QC
Seroconversion Panels
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
D-Dimer Test
Epithod 616 D-Dimer Kit
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.