We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ZeptoMetrix an Antylia scientific company

Download Mobile App




Loss of Regulatory Enzyme Spurs Kidney Cancer Growth

By LabMedica International staff writers
Posted on 31 Jul 2014
Cancer researchers have found that the enzyme fructose-1,6-bisphosphatase 1 (FBP1) is missing or inactive in the clear cell renal cell carcinoma (ccRCC) form of kidney cancer, a lack that gives the cancer cells a metabolic advantage over surrounding normal tissue.

FBP1 is a gluconeogenesis regulatory enzyme that catalyzes the hydrolysis of fructose1,6-bisphosphate to fructose 6-phosphate and inorganic phosphate. More...
Fructose-1,6-diphosphatase deficiency is associated with hypoglycemia and metabolic acidosis.

Investigators at the University of Pennsylvania (Philadelphia, USA) have been working with a mouse ccRCC model. Previous studies had shown that kidney tumors of this type were characterized by elevated glycogen levels and fat deposition. Development of these characteristics was associated with elevated expression of hypoxia inducible factors (HIFs) and mutations in the von Hippel-Lindau (VHL) encoded protein, pVHL, which occurs in 90% of ccRCC tumors.

The VHL protein (pVHL) is involved in the regulation of hypoxia inducible factor 1 alpha (HIF1alpha). This is a subunit of a heterodimeric transcription factor that at normal cellular oxygen levels is highly regulated. Under normal physiological conditions, pVHL recognizes and binds to HIF1alpha only when oxygen is present due to the post translational hydroxylation of two proline residues within the HIF1alpha protein. pVHL is an E3 ligase that ubiquitinates HIF1alpha and causes its degradation by the proteasome. In low oxygen conditions or in cases of VHL disease where the VHL gene is mutated, pVHL does not bind to HIF1alpha. This allows the subunit to dimerize with HIF1beta and activate the transcription of a number of genes, including vascular endothelial growth factor, platelet-derived growth factor B, erythropoietin, and genes involved in glucose uptake and metabolism.

In the current study, which was published in the July 20, 2014, online edition of the journal Nature, the investigators used an integrative approach comprising metabolomic profiling and metabolic gene set analysis to examine more than 600 kidney tumors from human patients. They determined that FBP1 was uniformly depleted in all of the ccRCC tumors examined. The human FBP1 locus was found to reside on chromosome 9q22, the loss of which was associated with poor prognosis for ccRCC patients.

FBP1 was found in the nucleus of normal cells, where it bound to HIF to modulate its effects on tumor growth. In cells lacking FBPI, rapidly growing tumor cells were found to produce energy up to 200 times faster than normal cells.

“This study is the first stop in this line of research for coming up with a personalized approach for people with clear cell renal cell carcinoma-related mutations,” said senior author Dr. Celeste Simon, professor of cell and developmental biology at the University of Pennsylvania. “Since FBP1 activity is also lost in liver cancer, which is quite prevalent, FBP1 depletion may be generally applicable to a number of human cancers.”

Related Links:
University of Pennsylvania



Platinum Member
Xylazine Immunoassay Test
Xylazine ELISA
Verification Panels for Assay Development & QC
Seroconversion Panels
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
Automatic Western Blot Analyzer
Tenfly Phoenix Blot Analyzer
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.