We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Vaccine Being Developed for Heart Disease Close to Reality

By LabMedica International staff writers
Posted on 08 Jul 2014
The world’s first vaccine for heart disease is becoming a possibility with researchers demonstrating significant arterial plaque reduction in concept testing in mice.

Klaus Ley, MD, from the La Jolla Institute for Allergy and Immunology (LA Jolla, CA, USA), and a vascular immunology specialist, is leading the vaccine effort, in which the scientists are trying to reduce plaque accumulation in the arteries by targeting inflammation. More...
In his latest finding, Dr. Ley used two mouse peptides, identified by Harley Tse, PhD, from Wayne State University (Detroit, MI, USA), which he integrated into testing the vaccine approach. In the study, vaccinated mice had about 40% less arterial plaque than mice that did not receive the vaccine.

“Heart disease remains our nation's number one killer,” said Mitchell Kronenberg, PhD, La Jolla Institute president and chief scientific officer. “We are excited by Dr. Ley’s studies, which show promise for creating a vaccine that may one day reduce the incidence of this terrible illness.”

The vaccine, if effective, could be administered in an attempt to prevent heart disease, and furthermore, to stop or reduce disease progression. In addition to heart disease, the vaccine could target strokes, which are also fueled by plaque buildup in the arteries. The research elicited excitement from several cardiology experts. Stanley Hazen, MD, PhD, section head of preventive cardiology at the Cleveland Clinic (OH, USA), one of the United States’ top cardiology hospitals, called the research “elegant and tremendously exciting. This lays the groundwork for someday being able to prevent or even eradicate heart disease by giving a vaccine. Truly a remarkably important advance,” said Dr. Hazen, also chairman of the department of cellular and molecular medicine.

Inflammation is also a very important contributor to arterial plaque buildup. “Many research studies over the last 15 years have demonstrated inflammation's critical role in heart disease,” said Dr. Ley. “By creating a vaccine to reduce inflammation in the arteries, we hope to significantly lessen the accompanying plaque buildup.”

Dr. Ley’s study was published December 27, 2014, in the journal Frontiers in Immunology. According to Dr. Ley, the vaccine type he is exploring is different than those people get for the flu and other infections. “A flu vaccine’s purpose is to teach your immune system to launch an attack if it encounters the virus,” he notes. “Our vaccine works more like the desensitization process used in allergy shots. Allergy shots are designed to teach the individual’s immune system to tolerate the allergen. Our vaccine would work on the same principle—only in this case we'd be teaching the immune system to tolerate certain molecules of our own bodies that it mistakenly attacks, which causes inflammation.”

In earlier research, Dr. Ley identified that a specific type of immune cells (CD4 T cells) control the inflammatory attack on the artery wall by receiving antigen-specific signals from other inflammatory cells in the vessel wall. Further, he discovered that these immune cells behave as if they have previously seen the antigen that causes them to launch the attack.

The discovery was particularly exciting since it meant the immune cells had ‘memory’ of the molecule brought forth by the antigen-presenting cells. “Immune memory is the underlying basis of successful vaccines,” Dr. Ley explained. “This meant that conceptually it was possible to consider the development of a vaccine for heart disease.”

Dr. Ley collaborated with fellow La Jolla Institute scientist Alessandro Sette, PhD and Dr. Tse of Wayne State University, to identify the specific peptides, which activate the arterial attack in mice—the byproduct of which is inflammation. The mouse peptides were used in the test vaccine to teach the body, through gradual exposure, to tolerate rather than attack those proteins.

In similar research, Dr. Ley has worked with Dr. Sette, who is an internationally recognized vaccine biologist, to identify more candidate peptides with the objective of ultimately creating a heart disease vaccine for people. “The next step is to test promising candidate peptides in specially engineered mice with an immune system more similar to humans,” he said. If successful, the vaccine could begin human clinical trials in as little as three years, he added.

Related Links:

La Jolla Institute for Allergy and Immunology
Wayne State University



Platinum Member
Xylazine Immunoassay Test
Xylazine ELISA
Verification Panels for Assay Development & QC
Seroconversion Panels
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
High-Density Lipoprotein Containing Cholesterol Assay
HDL-c direct FS
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.