We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Human Proteome Catalog Created for Speeding Research and Diagnostic Development

By LabMedica International staff writers
Posted on 30 Jun 2014
An international team of researchers recently created an initial catalog of the human “proteome,” in an effort to provide a protein equivalent of the Human Genome Project. More...
Using 30 different human tissues in total, the scientists identified proteins encoded by 17,294 genes, which is approximately 84% of all of the genes in the human genome predicted to encode proteins.

The project was described May 28, 2014, in the journal Nature, the scientists also reported the identification of 193 novel proteins that came from regions of the genome not expected to code for proteins, suggesting that the human genome is more complicated than earlier believed. The cataloging project, led by researchers at the Johns Hopkins University (Baltimore, MD, USA) and the Institute of Bioinformatics (Bangalore, India; www.ibioinformatics.org), should provide a vital source for biologic research and medical diagnostics, according to the team’s leaders.

“You can think of the human body as a huge library where each protein is a book,” said Akhilesh Pandey, MD, PhD, a professor at the McKusick-Nathans Institute of Genetic Medicine and of biological chemistry, pathology, and oncology at the Johns Hopkins University and the founder and director of the Institute of Bioinformatics. “The difficulty is that we don’t have a comprehensive catalog that gives us the titles of the available books and where to find them. We think we now have a good first draft of that comprehensive catalog.”

Whereas genes determine many of the characteristics of an organism, they do so by providing instructions for creating proteins, the building blocks and taskmasters of cells, and therefore of tissues and organs. For this reason, many investigators believe a catalog of human proteins—and their location within the body—to be even more informative and useful than the catalog of genes in the human genome.

Examining proteins is far more technically problematic than studying genes, Dr. Pandey noted, because the structures and functions of proteins are complex and varied. Furthermore, to just list of existing proteins would not be very helpful without accompanying data about where in the body those proteins are found. Therefore, most protein studies to date have focused on individual tissues, often in the context of specific diseases, he added.

To achieve a more comprehensive survey of the proteome, the researchers started by taking samples of 30 tissues, extracting their proteins and using enzymes like chemical scissors to cut them into smaller pieces, called peptides. They then ran the peptides through a series of instruments designed to figure out their identity and measure their relative abundance. “By generating a comprehensive human protein dataset, we have made it easier for other researchers to identify the proteins in their experiments,” said Dr. Pandey. “We believe our data will become the gold standard in the field, especially because they were all generated using uniform methods and analysis, and state-of-the-art machines.”

Among the proteins whose data patterns have been characterized for the first time are many that were never predicted to exist. The researchers’ most unexpected finding was that 193 of the proteins they identified could be traced back to these apparently noncoding regions of DNA. “This was the most exciting part of this study, finding further complexities in the genome,” remarked Dr. Pandey. “The fact that 193 of the proteins came from DNA sequences predicted to be noncoding means that we don’t fully understand how cells read DNA, because clearly those sequences do code for proteins.”

Dr. Pandey believes that the human proteome is so extensive and complex that researchers’ catalog of it will never be fully complete, but this research provides a solid foundation that others can effectively build upon.

Related Links:

Johns Hopkins University
Institute of Bioinformatics



Platinum Member
ADAMTS-13 Protease Activity Test
ATS-13 Activity Assay
Verification Panels for Assay Development & QC
Seroconversion Panels
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
Spinal Fluid Cell Count Control
Spinalscopics
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.