We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Innovative Techniques Devised for Characterizing Proteins

By LabMedica International staff writers
Posted on 28 Oct 2010
Utilizing a combination of high-powered computers and sophisticated research magnetic resonance (MR) data, a U.S. More...
biophysical chemist has developed techniques that enhance the manner in which scientists can examine and predict the structure and dynamics of proteins found in the human body. These developments could eventually shorten the time it takes researchers to develop new, more effective drugs and better understand biomedical processes that underlie a host of health disorders.

The new techniques "allow us to more accurately understand protein behavior and function at all levels, how enzymes work, and how to develop drugs that bind to certain proteins,” said Dr. Rafael Brüschweiler, a professor in Florida State University's (FSU; Tallahassee, USA) department of chemistry and biochemistry and associate director for biophysics at the U.S. National High Magnetic Field Laboratory at the FSU.

Given that there are hundreds of thousands of different proteins found in the human body, advances such as Dr. Brüschweiler's that can streamline their analysis and understanding are viewed as most desirable in the scientific community.

Over the past several years, Dr. Brüschweiler and his colleagues have incorporated a pair of complementary but powerful tools, both of which provide detailed data about the structure and dynamics of proteins at the atomic level. Nuclear magnetic resonance (NMR) data are first collected for a specific protein that is being analyzed. NMR is a research tool that utilizes high magnetic fields to measure the strengths, directions, and temporary fluctuations of magnetic interactions between the atoms in a protein fragment.

Subsequently, in a technique Dr. Brüschweiler has developed, high-powered computers are used to confirm the NMR data in terms of their realistic representation of protein structure and dynamics, as well as to make additional predictions of those characteristics.

The computational results significantly rely on the shape of the protein's "energy landscape,” the conformational space available to that protein under physiologic conditions. However, due to its intricacy, improving characterizations of the energy landscape is a difficult and time-consuming undertaking. In fact, until recently, a computer simulation of a single protein that represented just a microsecond took several months. Now, with the aid of the powerful computer array at Florida State's High Performance Computing Center, it takes Dr. Brüschweiler and his group only a fraction of the time it once did.

Working with a postdoctoral associate, Da-Wei Li, Brüschweiler has found a highly effective way to use directly the NMR information for improving the protein potential. The basic idea is to "recycle” an existing simulation of an intact protein, using methods taken from statistical physics, for many trial potentials until the one is found that yields the best agreement with experiment. This leads to an increase in speed by a factor of 100,000 or more over previous techniques. The approach is not only efficient but also permits the improvement of the protein potential directly on intact proteins, instead of on small fragments, as was previously the case.

"This has opened up a new way of becoming increasingly quantitative in our computations, which is key in developing a predictive understanding of the functions of proteins,” Dr. Brüschweiler said.

An article describing the research was published online August 16, 2010, in the journal Angewandte Chemie. "This is the culmination of a number of years of research on our part, so obviously we're excited about the progress we have made,” Dr. Brüschweiler said. "While this is fairly basic research designed to develop a greater understanding of life at a molecular level, it opens up a range of possibilities for future advances by scientists all over the world.”

Related Links:
Florida State University



Platinum Member
Xylazine Immunoassay Test
Xylazine ELISA
Verification Panels for Assay Development & QC
Seroconversion Panels
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
DNA Extraction Kit
MagMAX DNA Multi-Sample Ultra 2.0 Kit
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.