We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ZeptoMetrix an Antylia scientific company

Download Mobile App




X-Ray Diffraction Microscope Designed to Reveal 3D Internal Structure of Whole Cell

By LabMedica International staff writers
Posted on 29 Jul 2010
Three-dimensional (3D) imaging is greatly expanding the ability of researchers to examine biologic specimens, enabling a glance into their internal structures. More...
Moreover, recent developments in X-ray diffraction methods have helped extend the limit of this approach.

While significant progress has been made in optical microscopy to break the diffraction barrier, such techniques rely on fluorescent labeling technologies, which prohibit the quantitative 3D imaging of the entire contents of cells. Cryoelectron microscopy can image structures at a resolution of 3-5 nm, but this only works with thin or sectioned specimens.

Furthermore, although X-ray protein crystallography is currently the primary method used for determining the 3D structure of protein molecules, many biological specimens--such as whole cells, cellular organelles, some viruses and many important protein molecules--are difficult or impossible to crystallize, making their structures inaccessible. Overcoming these limitations requires the employment of different techniques.

Now, in an article published May 31, 2010, in the journal Proceedings of [U.S.] National Academy of Sciences (PNAS), scientists from the University of California, Los Angeles (UCLA; USA) and their collaborators demonstrate the use of a unique X-ray diffraction microscope that enabled them to reveal the internal structure of yeast spores. The team reports the quantitative 3D imaging of a whole, unstained cell at a resolution of 50 nm - 60 nm using X-ray diffraction microscopy, also known as lensless imaging.

Researchers identified the 3D morphology and structure of cellular organelles, including the cell wall, vacuole, endoplasmic reticulum, mitochondria, granules, and nucleolus. The research may open a way to identifying the individual protein molecules inside whole cells using labeling technologies.

The lead authors on the study are Dr. Huaidong Jiang, a UCLA assistant researcher in physics and astronomy, and Dr. John Miao, a UCLA professor of physics and astronomy. The work is a culmination of a collaboration started three years ago with Dr. Fuyu Tamanoi, UCLA professor of microbiology, immunology, and molecular genetics. Dr. Miao and Dr. Tamanoi are both researchers at UCLA's California NanoSystems Institute. Other collaborators include teams at Riken Spring 8 (Hyogo, Japan) and the Institute of Physics, Academia Sinica (Taipei, Taiwan).

"This is the first time that people have been able to peek into the 3D internal structure of a biological specimen, without cutting it into sections, using X-ray diffraction microscopy, Dr. Miao noted. "By avoiding use of X-ray lenses, the resolution of X-ray diffraction microscopy is ultimately limited by radiation damage to biological specimens. Using cryogenic technologies, 3D imaging of whole biological cells at a resolution of 5 nm - 10 nm should be achievable. Our work hence paves a way for quantitative 3D imaging of a wide range of biological specimens at nanometer-scale resolutions that are too thick for electron microscopy.”

Dr. Tamanoi prepared the yeast spore samples analyzed in this study. Spores are specialized cells that are formed when they are placed under nutrient-starved conditions. Cells use this survival strategy to deal with harsh conditions. "Biologists wanted to examine internal structures of the spore, but previous microscopic studies provided information on only the surface features. We are very excited to be able to view the spore in 3D,” Dr. Tamanoi said. "We can now look into the structure of other spores, such as Anthrax spores and many other fungal spores. It is also important to point out that yeast spores are of similar size to many intracellular organelles in human cells. These can be examined in the future.”

Since its first experimental demonstration by Dr. Miao and collaborators in 1999, coherent diffraction microscopy has been applied to imaging a wide range of materials science and biologic specimens, such as nanoparticles, nanocrystals, biomaterials, cells, cellular organelles, viruses, and carbon nanotubes using X-ray, electron, and laser facilities worldwide. Until now, however, the radiation-damage problem and the difficulty of acquiring high-quality 3D diffraction patterns from individual whole cells have prevented the successful high-resolution 3D imaging of biologic cells by X-ray diffraction.

Related Links:

University of California, Los Angeles





Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Verification Panels for Assay Development & QC
Seroconversion Panels
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
Blood Glucose Reference Analyzer
Nova Primary
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.