We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




New Technology Developed To Visualize Molecules in Motion

By LabMedica International staff writers
Posted on 30 Dec 2008
An innovative X-ray technology has been developed that allows the observation of molecular motion on a time scale never reached before.

The technique was developed by a team of researchers from the Ecole Polytechnique Federale de Lausanne (EPFL; Switzerland) and the Paul Scherrer Institute (PSI; Villigen, Switzerland). More...
Results of the research, led by Prof. Majed Chergui, head of EPFL's laboratory of ultrafast spectroscopy in collaboration with collaborators at PSI, was published online December 11, 2008, in the journal Science.

According to the scientists, this discovery provides a promising approach for the study of chemical and biologic systems. It allows a better determination of the structural evolution of molecules during a chemical reaction. The researchers have applied it to the study of metal-based molecular complexes, which is of high interest for chemical researchers. This could lead to applications in magnetic data storage or solar energy. It also opens new perspectives in biology, because the molecules studied are analogous to the active center in hemoproteins (hemoglobin, myoglobin).

It is possible to follow a cat landing on its feel in real time using a camera with shutter times on the order of tens of milliseconds. To do the same with molecules, 100,000 million times smaller than cats, requires shutter times that are 100,000 million times faster--a few tens of femtoseconds (1 femtosecond is to a second what a second is to 32 million years).

Although there are lasers that permit such shutter speeds, no existing optical techniques can capture the molecular structure. To overcome this limitation, Prof. Chergui's team combined lasers delivering femtosecond pulses of ultraviolet-visible light with a source of femtosecond X-ray pulses, in a technique now known as ultrafast X-ray absorption spectroscopy. "With the extremely short wavelengths of this kind of pulsed radiation, it is possible to observe the molecular structure changes, and thus to obtain precise information about the breaking, the formation, or the transformation of chemical bonds between atoms. And all this, in real time,” explained Prof. Chergui.

To reach this level of accuracy, the researchers required a source of stable and tunable femtosecond X-ray pulses. They found it at the Paul Scherrer Institute, in a collaboration with Dr. Rafael Abela's team. Utilizing the femtosecond X-ray pulses extracted from the Swiss Light Source synchrotron in a technique developed at the PSI, the researchers were able to track in real time a structural change of the molecule in 150 femtoseconds. This method, according to the scientists, should be an excellent modality for analyzing reactions in liquid and disordered environments that characterize many biologic and chemical systems.

Related Links:
Ecole Polytechnique Federale de Lausanne
Paul Scherrer Institute



Platinum Member
Xylazine Immunoassay Test
Xylazine ELISA
Verification Panels for Assay Development & QC
Seroconversion Panels
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
COVID-19 Antigen Self-Test
Panbio COVID-19 Antigen Self-Test
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.