We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Improved Method Determines Structure in Membrane Proteins

By LabMedica International staff writers
Posted on 10 Sep 2008
Determining the shape and function of specific proteins in the human body is becoming faster and easier, due to recent advancements.

By integrating custom-built spectrometers, innovative probe designs, and faster pulse sequences, a team led by the University of Illinois at Urbana-Campaign (IL, USA) chemistry professor Dr. More...
Chad Rienstra has developed unique capabilities for probing protein chemistry and structure through the use of solid-state nuclear magnetic resonance spectroscopy.

The researchers' recent findings represent considerable progress toward atomic-scale resolution of protein structure by solid-state nuclear magnetic resonance (NMR) spectroscopy. The technique can be applied to a large range of membrane proteins and fibrils, which, because they are not water-soluble, are frequently not amenable to more traditional solution-NMR spectroscopy or X-ray crystallography. "In our experiments, we explore couplings between atoms in proteins,” Dr. Rienstra said. "Our goal is to translate genomic information into high-resolution structural information, and thereby be able to better understand the function of the proteins.”

Solid-state NMR spectroscopy relaxes the need for solubility of the sample. In solution NMR spectroscopy, molecules are allowed to tumble randomly in the magnetic field. In solid-state NMR spectroscopy, molecules are immobilized within a small cylinder called a rotor. The rotor is then spun at high speed in the magnetic field. "With increased speed and sensitivity, we can obtain very high resolution spectra,” Dr. Rienstra said. "And, because we can resolve thousands of signals at a time--one for each atom in the sample--we can determine the structure of the entire protein.”

To improve sensitivity and accelerate data collection, Dr. Rienstra's group is developing smaller rotors that can be spun at rates exceeding 25,000 rotations per second. The faster rotation rate and smaller sample size allows the researchers to obtain more data in less time, and solve structure with just a few milligrams of protein.

The determination of protein structure benefits not only from improvements in technology, but also from the researchers' novel approach to refining geometric parameters. Structure determination is typically based upon distances between atoms. Dr. Rienstra discovered a way of measuring both the distance between atoms and their relative orientations with very high precision. "Using this technique, we can more precisely define the fragments of the molecule, and how they are oriented,” Dr. Rienstra commented. "That allows us to define protein features and determine structure at the atomic scale.”

Dr. Rienstra presented his group's latest findings and techniques at the national meeting of the American Chemical Society, held in Philadelphia, PA, USA, August 17-21, 2008. Dr. Rienstra and his collaborators also described their work--creating the highest resolution protein structure solved by solid-state NMR--in the March 25, 2008, issue of the journal Proceedings of the [U.S.] National Academy of Sciences (PNAS).

Related Links:
University of Illinois at Urbana-Campaign



Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Verification Panels for Assay Development & QC
Seroconversion Panels
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
Rapid Flu Test
Influenza A&B Rapid Test Kit
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.