We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
RANDOX LABORATORIES

Download Mobile App




New Method Using DNA Nanoballs to Revolutionize Pathogen Detection

By LabMedica International staff writers
Posted on 08 Sep 2023
Print article
Image: Electronic detection of DNA nanoballs enables simple pathogen detection (Photo courtesy of 123RF)
Image: Electronic detection of DNA nanoballs enables simple pathogen detection (Photo courtesy of 123RF)

Throughout the recent COVID-19 pandemic, protein-based diagnostics played a significant role in rapid testing. However, developing high-quality antibodies for these methods is time-consuming. In contrast, nucleic acid-based approaches offer advantages in terms of development ease, sensitivity, and flexibility. Scientists have now pioneered a novel technique using DNA Nanoballs for pathogen detection that could simplify nucleic acid testing and revolutionize pathogen identification. Their research could pave the way for a simple electronic-based test to quickly and affordably identify various nucleic acids in diverse scenarios.

The methodology developed by researchers at Karolinska Institute (Stockholm, Sweden) combined Molecular Biology (specifically DNA Nanoball generation) with electronics (electric impedance-based quantification) to create this groundbreaking detection tool. They are cautiously optimistic about its potential to identify a range of pathogenic agents in real-world settings. The team modified an isothermal DNA amplification reaction called LAMP to produce tiny DNA nanoballs measuring 1-2μM if the pathogen was present in the sample. These nanoballs are then guided through tiny channels and electrically identified as they pass between two electrodes. The method has demonstrated impressive sensitivity, capable of detecting as few as 10 target molecules, and provides rapid results in under an hour using a compact, stationary system.

This label-free detection method has the potential to accelerate the development of new diagnostic kits. By combining affordable mass-produced electronics with lyophilized reagents, it could become a cost-effective, widely accessible, and scalable point-of-care device. Currently, the research team is actively exploring applications in fields such as environmental monitoring, food safety, virus detection, and antimicrobial resistance testing. They are also considering licensing options and establishing a startup to leverage this technology, having recently applied for a patent.

“Fast and accurate detection of genetic material is key for diagnosis, especially so in response to the emergence of novel pathogens,” said principal investigator Vicent Pelechano.

Related Links:
Karolinska Institute 

Platinum Member
Xylazine Immunoassay Test
Xylazine ELISA
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
COVID-19 Antigen Self-Test
Panbio COVID-19 Antigen Self-Test

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: Microscope image showing human colorectal cancer tumor with Fusobacterium nucleatum stained in a red-purple color (Photo courtesy of Fred Hutch Cancer Center)

Mouth Bacteria Test Could Predict Colon Cancer Progression

Colon cancer, a relatively common but challenging disease to diagnose, requires confirmation through a colonoscopy or surgery. Recently, there has been a worrying increase in colon cancer rates among younger... Read more

Pathology

view channel
Image: A new study has identified patterns that predict ovarian cancer relapse (Photo courtesy of Cedars-Sinai)

Spatial Tissue Analysis Identifies Patterns Associated With Ovarian Cancer Relapse

High-grade serous ovarian carcinoma is the most lethal type of ovarian cancer, and it poses significant detection challenges. Typically, patients initially respond to surgery and chemotherapy, but the... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.