We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Study Explores MicroRNA Signatures to Detect and Classify Several Prominent Cancers

By LabMedica International staff writers
Posted on 02 Aug 2023
Print article
Image: A multiclass cancer diagnostic tool uses AI and micro-RNA (Photo courtesy of Freepik)
Image: A multiclass cancer diagnostic tool uses AI and micro-RNA (Photo courtesy of Freepik)

Cancer remains one of the world's most devastating diseases. As the medical community strives to enhance diagnostic tools, microRNAs, or miRNAs, have taken center stage in biomedical research. These small non-coding ribonucleic acids (RNAs) play a crucial role in all biological functions, primarily gene regulation. Consequently, miRNAs oversee various biological and pathological processes, including cancer formation and progression. The close link between miRNAs and many cancers has led to an increased interest in using miRNA expression profiling data for non-invasive early detection. Machine learning has proven to be instrumental in creating high-performance pan-cancer classification models and identifying potential novel miRNA biomarkers for clinical investigation. However, it's crucial to understand how these data science methodologies relate to known biological processes to better integrate them into clinical settings.

Researchers from Florida Atlantic University (FAU, Boca Raton, FL, USA) further investigated the potential of miRNAs as biomarkers for cancer classification and enhancing clinical classification applications. They have developed a multiclass cancer diagnostic model using miRNA expression profiles through an iterative process that applied multiple techniques to an expanding dataset of miRNA expression quantification data. The study involved assessing how top miRNA features selected by machine learning models correlate with clinically and biologically verified miRNA biomarkers. Using Support Vector Machine and Random Forest machine learning models, they developed cancer classification models and progressively added more cancer classes to the multiclass models. The study analyzed the relationship between relevant miRNAs identified through feature selection and the classification models' performance metrics across 20 iterations, each incorporating another primary sample site, thereby increasing the types of cancer included.

The researchers studied the changes in success metrics as more cancer types were added, how the 20-miRNA signature evolved with the inclusion of more cancer types, and the overall characteristics of the full dataset using principal component analysis, a well-established technique for analyzing large datasets with numerous dimensions or features. This study differs from earlier ones focusing on miRNA feature signatures for a final multiclass dataset as it tracked changes in clinical and biological relevance with each addition of a cancerous tissue type. The study's findings suggest that models with more cancer classes shift toward focusing on cancer-diverse miRNAs of greater relevance with characterized functionality. The study implies that miRNAs might be highly unique to particular cancerous tissues and could serve as strong biomarkers for detection and classification. However, the study noted that the current verified biomarkers fall toward more cancer-wide miRNAs when detecting cancer.

The study offers insights into possible relationships between the overall clinical relevance of the feature extraction signature and the models' success metrics. It demonstrates the feasibility of using a multi-tissue miRNA cancer signature as a generalizable signature for single-class cancer detection in various prevalent cancers. The findings revealed that although the performance metrics decreased as the number of cancer classes increased, the percentage relevance of the miRNA feature selection signature increased marginally before stabilizing. Also, after performing principal component analysis, non-cancer tissues from all samples showed very similar expression visualizations, whereas all cancerous tissues had unique profiles.

“MicroRNAs have significant promise for future diagnostic tests because they can be detected directly from biological fluids such as blood, urine or saliva as well as the availability of high-quality measurement techniques for miRNAs,” said Oneeb Rehman, corresponding author and a Ph.D. candidate in the Department of Electrical Engineering and Computer Science within FAU’s College of Engineering and Computer Science. “This makes understanding and characterizing the biological basis behind potential miRNA classification tools crucial for integration into clinical environments.”

Related Links:
FAU

Platinum Member
Xylazine Immunoassay Test
Xylazine ELISA
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
hCG Whole Blood Pregnancy Test
VEDALAB hCG-CHECK-1

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: Microscope image showing human colorectal cancer tumor with Fusobacterium nucleatum stained in a red-purple color (Photo courtesy of Fred Hutch Cancer Center)

Mouth Bacteria Test Could Predict Colon Cancer Progression

Colon cancer, a relatively common but challenging disease to diagnose, requires confirmation through a colonoscopy or surgery. Recently, there has been a worrying increase in colon cancer rates among younger... Read more

Pathology

view channel
Image: A new study has identified patterns that predict ovarian cancer relapse (Photo courtesy of Cedars-Sinai)

Spatial Tissue Analysis Identifies Patterns Associated With Ovarian Cancer Relapse

High-grade serous ovarian carcinoma is the most lethal type of ovarian cancer, and it poses significant detection challenges. Typically, patients initially respond to surgery and chemotherapy, but the... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.