We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
BIO-RAD LABORATORIES

Download Mobile App




New 'Protein Nano-Switch' Method Paves Way for Faster, More Accurate Diagnostic Tests

By LabMedica International staff writers
Posted on 02 Aug 2023
Print article
Image: New 'protein nano-switch' method promises rapid and reliable development of diagnostic tests (Photo courtesy of Freepik)
Image: New 'protein nano-switch' method promises rapid and reliable development of diagnostic tests (Photo courtesy of Freepik)

Presently, 'point of care' diagnostic tests that offer results on the spot, such as those for blood sugar, pregnancy, and COVID-19, utilize protein-sensing systems to detect sugar, pregnancy hormones, and COVID-19 proteins. However, these tests make up only a small part of the requirements in a patient-centric healthcare model. The creation of new sensing systems is a demanding and lengthy task that involves significant trial and error. Researchers have now developed a new 'protein nano-switch' technique that significantly accelerates the development of similar diagnostic tests by reducing the required time and boosting success rates.

A multidisciplinary research team that included scientists from Queensland University of Technology (QUT, Brisbane, Australia) has developed an approach for designing molecular ON-OFF switches based on proteins that can be applied in numerous biotechnological, biomedical, and bioengineering settings. This innovative method which allows researchers to develop more rapid and accurate diagnostic tests involves using modified proteins to act like ON/OFF switches in response to specific targets. The key advantage is that the system is modular, much like building with Lego blocks, allowing for easy replacement of parts to target different elements—such as a different drug or a medical biomarker.

The new protein-engineering technology offers a unique way to create lab tests. It offers the potential to construct various diagnostic and analytic tests with a broad array of possible applications, including human and animal health diagnostics. The researchers demonstrated their technology by focusing on a cancer chemotherapy drug that is toxic and must be frequently measured to ensure patient safety. The sensor they designed for this drug uses a color change to identify and measure the drug. The next stage would involve testing the sensor for clinical use approval. The researchers intend to standardize and scale this approach and begin creating more complex subsystems. According to the researchers, there are two potential paths for future work.

"One is to develop computer models that allow us to design and build the switches even more rapidly and precisely," said Professor Kirill Alexandrov, of the QUT School of Biology and Environmental Science. "The other is to demonstrate the scale and potential of the technology by building many switches for different diagnostic applications."

Related Links:
QUT 

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
Influenza Virus Test
NovaLisa Influenza Virus B IgM ELISA

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: Microscope image showing human colorectal cancer tumor with Fusobacterium nucleatum stained in a red-purple color (Photo courtesy of Fred Hutch Cancer Center)

Mouth Bacteria Test Could Predict Colon Cancer Progression

Colon cancer, a relatively common but challenging disease to diagnose, requires confirmation through a colonoscopy or surgery. Recently, there has been a worrying increase in colon cancer rates among younger... Read more

Pathology

view channel
Image: A new study has identified patterns that predict ovarian cancer relapse (Photo courtesy of Cedars-Sinai)

Spatial Tissue Analysis Identifies Patterns Associated With Ovarian Cancer Relapse

High-grade serous ovarian carcinoma is the most lethal type of ovarian cancer, and it poses significant detection challenges. Typically, patients initially respond to surgery and chemotherapy, but the... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.