We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
RANDOX LABORATORIES

Download Mobile App




Innovative ‘Fragmentomics’ Approach to Enable Earlier Detection of Cancer Using Smaller Blood Draws

By LabMedica International staff writers
Posted on 31 Jan 2024

When cells die, they disintegrate, releasing part of their DNA material into the bloodstream. This cell-free DNA (cfDNA) contains cancer signals. The cfDNA from healthy cells breaks down into standard-sized fragments, whereas cancerous cfDNA fragments disintegrate at different locations, often in the genome's repetitive regions. Instead of searching for specific DNA mutations, which is like finding a single misarranged letter in billions of letters, researchers have developed a novel machine-learning method. This method detects variations in fragmentation patterns between cancerous and normal cfDNA in these repetitive regions of cancer. This groundbreaking technique could potentially allow for earlier cancer detection in patients through smaller blood samples, as it requires approximately eight times less blood than what is needed for whole genome sequencing.

The algorithm called Alu Profile Learning Using Sequencing (A-Plus) was developed by researchers at City of Hope (Duarte, CA, USA) and Translational Genomics Research Institute (TGen, Phoenix, AZ, USA). The researchers tested the algorithm on 7,657 samples from 5,980 individuals, 2,651 of whom were diagnosed with cancers like breast, colon and rectum, esophagus, lung, liver, pancreas, ovary, or stomach cancer. They discovered that A-Plus could identify about half of the cancers across the 11 types studied. The test proved to be highly accurate, yielding only one false positive for every 100 tests conducted.

Significantly, most of the cancer samples came from individuals with early-stage disease, who had little to no metastatic lesions at the time of diagnosis. Going forward, a clinical trial is set to begin in summer 2024 to compare the effectiveness of this fragmentomics blood testing approach against the standard-of-care in adults aged 65-75. The aim is to assess how well this biomarker panel can detect cancer at an earlier, more treatable stage.

“A huge body of evidence shows that cancer caught at later stages kills people,” said Cristian Tomasetti, Ph.D., corresponding author of the new study and director of City of Hope’s Center for Cancer Prevention and Early Detection. “This new technology gets us closer to a world where people will receive a blood test annually to detect cancer earlier when it is more treatable and possibly curable.”

“Our technique is more practical for clinical applications as it requires smaller quantities of genomic material from a blood sample,” added Kamel Lahouel, Ph.D., an assistant professor in TGen’s Integrated Cancer Genomics Division and the study’s co-first author. “Continued success in this area and clinical validation opens the door for the introduction of routine tests to detect cancer in its earliest stages.”

Related Links:
City of Hope
TGen, Phoenix

Platinum Member
Xylazine Immunoassay Test
Xylazine ELISA
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
Rheumatoid Factors (RF) Test
Rheumatoid Factors (RF)
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: Microscope image showing human colorectal cancer tumor with Fusobacterium nucleatum stained in a red-purple color (Photo courtesy of Fred Hutch Cancer Center)

Mouth Bacteria Test Could Predict Colon Cancer Progression

Colon cancer, a relatively common but challenging disease to diagnose, requires confirmation through a colonoscopy or surgery. Recently, there has been a worrying increase in colon cancer rates among younger... Read more

Pathology

view channel
Image: A new study has identified patterns that predict ovarian cancer relapse (Photo courtesy of Cedars-Sinai)

Spatial Tissue Analysis Identifies Patterns Associated With Ovarian Cancer Relapse

High-grade serous ovarian carcinoma is the most lethal type of ovarian cancer, and it poses significant detection challenges. Typically, patients initially respond to surgery and chemotherapy, but the... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.