We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
RANDOX LABORATORIES

Download Mobile App




AACC Competition Demonstrates How Labs Can Use Data Analytics to Solve Real Problems

By LabMedica International staff writers
Posted on 17 Oct 2022

Clinicians rely on parathyroid hormone-related peptide (PTHrP) measurement to help establish a diagnosis of humoral hypercalcemia of malignancy - a rare form of cancer that causes, among other things, high levels of calcium in the blood. The problem: Clinicians often order it for patients with low pretest probability. Excessive PTHrP testing can lead to expensive, unnecessary, and potentially harmful procedures, including invasive laboratory testing to locate a possibly nonexistent cancerous tumor. A successful predictive algorithm would help laboratorians quickly and accurately identify potentially inappropriate PTHrP test orders by predicting whether laboratory data available at the time of order already suggest an abnormal PTHrP result. A machine-learning challenge introduced for the first time by the American Association for Clinical Chemistry (Washington, DC, USA; www.aacc.org) at the 2022 AACC Annual Scientific Meeting & Clinical Lab Expo demonstrated how laboratories can use data analytics to solve these real problems facing patients and clinicians.

The Predicting PTHrP Results Competition introduced by the AACC at the event in association with the informatics section in the department of pathology and immunology of Washington University School of Medicine, St. Louis (WUSM, St. Louis, MI, USA) aimed to engage the community of laboratory medicine practitioners in a fun and friendly online environment where they could practice their data analytics skills, learn from each other, and see how others approach problems on the data-driven side of laboratory medicine. Competition participants formed teams and used securely shared real, de-identified clinical data from PTHrP orders at WUSM to build their predictive algorithms. This is termed the “practice dataset”. Using real clinical data was a big deal because most machine-learning competitions use synthesized datasets. Organizers set up the competition using Kaggle, a popular online platform for machine-learning modeling and contests, and selected F1 score (the harmonic mean of sensitivity and specificity) as the performance metric.

A major challenge for the teams was developing a predictive model that achieved high accuracy without overfitting it to the public dataset (the practice dataset). Overfitting would mean the algorithm worked well on the initial data but failed if applied to new data and was not generalizable. Organizers used a second, private dataset to judge the algorithm’s effectiveness. From May to June 2022, 24 teams ran a total of 395 iterations of their predictive models through the public dataset. Each time a team submitted a predictive model for an attempt, they used the resulting F1 score to improve - or “train” - the model. For the final attempt, each team ran their predictive model through the private dataset. The winning team, Team Kagglist, achieved an F1 score of 0.9 with their predictive model. For reference, WUSM’s manual approach for identifying patients at risk for PTHrP had an F1 score of 0.6, making the algorithm a significant improvement over standard practice.

“We shouldn’t expect a predictive model trained on data from one hospital to automatically work at other hospitals,” said Team Kaggle’s Yingheng Wang. “Ultimately, we should aim to create adaptive models that can be fine-tuned by other institutions for their specific populations.”

“The quality of all 24 models was excellent and showed a high degree of accuracy for the very difficult task we challenged participants with,” said competition organizer Mark Zaydman, MD, PhD, an assistant professor of pathology and immunology at WUSM. “This competition really showed our community is ready to engage with sophisticated machine learning and data analytics tools.”

Related Links:
AACC 

Platinum Member
ADAMTS-13 Protease Activity Test
ATS-13 Activity Assay
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
Spinal Fluid Cell Count Control
Spinalscopics
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: Signs of multiple sclerosis show up in blood years before symptoms appear (Photo courtesy of vitstudio/Shutterstock)

Unique Autoantibody Signature to Help Diagnose Multiple Sclerosis Years before Symptom Onset

Autoimmune diseases such as multiple sclerosis (MS) are thought to occur partly due to unusual immune responses to common infections. Early MS symptoms, including dizziness, spasms, and fatigue, often... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: Microscope image showing human colorectal cancer tumor with Fusobacterium nucleatum stained in a red-purple color (Photo courtesy of Fred Hutch Cancer Center)

Mouth Bacteria Test Could Predict Colon Cancer Progression

Colon cancer, a relatively common but challenging disease to diagnose, requires confirmation through a colonoscopy or surgery. Recently, there has been a worrying increase in colon cancer rates among younger... Read more

Pathology

view channel
Image: A new study has identified patterns that predict ovarian cancer relapse (Photo courtesy of Cedars-Sinai)

Spatial Tissue Analysis Identifies Patterns Associated With Ovarian Cancer Relapse

High-grade serous ovarian carcinoma is the most lethal type of ovarian cancer, and it poses significant detection challenges. Typically, patients initially respond to surgery and chemotherapy, but the... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.