We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
BIO-RAD LABORATORIES

Philips Healthcare

Operates in Diagnostic Imaging Systems, Patient Care and Clinical Informatics, Customer Services, and Home Healthcare... read more Featured Products: More products

Download Mobile App




Philips Collaborates with AI Startup Ibex to Accelerate Adoption of AI-Powered Digital Pathology Solutions

By LabMedica International staff writers
Posted on 13 Apr 2021
Royal Philips (Amsterdam, The Netherlands) and Ibex Medical Analytics (Tel Aviv, Israel) have entered into a strategic collaboration to jointly promote their digital pathology and AI solutions to hospitals, health networks and pathology labs worldwide.

The combination of Philips digital pathology solution (Philips IntelliSite Pathology Solution) and Ibex’s Galen AI-powered cancer diagnostics platform, currently in clinical use in Europe and the Middle East, empowers pathologists to generate objective, reproducible results, increase diagnostic confidence, and enable the productivity and efficiency improvements needed to cope with ever-increasing demand for pathology-based diagnostics. The announcement marks the latest extension to Philips’ AI-enabled Precision Diagnosis solutions portfolio, which leverages Philips and third-party AI solutions to deliver cutting-edge clinical decision support and optimized workflows that enable healthcare providers to deliver on the Quadruple Aim of better patient outcomes, improved patient and staff experiences, and lower cost of care.

The trend towards centralized pathology labs, the global shortage of trained pathologists, and increasing demands on histopathology posed by the growing number of cancer patients, leads pathology labs to actively seek efficiency-enhancing solutions that enable to maintain high accuracy levels. Digital pathology, enabled by solutions such as Philips IntelliSite Pathology Solution has already been shown to improve pathology lab productivity by 25%, while also allowing remote image reading by specialists and the immediate sharing of images with referring hospitals as part of comprehensive pathology reports. Ibex’s AI-powered Galen platform further streamlines workflow and improves accuracy via automated case prioritization, cancer heatmaps, grading and other productivity-enhancing tools.

Philips digital pathology solution is a comprehensive turnkey solution that helps to speed and simplify access to histopathology information across cancer care and beyond, supports full-scale digitization of histology in pathology labs and lab networks, and help increases workflow efficiency. At the heart is Philips IntelliSite Pathology Solution, which comprises an ultra-fast pathology slide scanner, an image management system and display, which includes advanced software tools to manage slide scanning, image storage, case review, and the sharing of patient information. By fully digitizing post-sample-preparation histopathology, it facilitates the streamlining of pathology workflows and enables the connectivity needed between multi-disciplinary teams and specialties when making complex cancer diagnosis and treatment decisions, from early detection and precision diagnosis through to precision treatment and predictable outcomes.

Ibex’s Galen platform adds AI-powered cancer detection, case prioritization, grading and other productivity-enhancing insights. Users have reported significant improvements in diagnostic efficiency, with 27% reduction in time-to-diagnosis compared to conventional microscope viewing, one to two-day reductions in total turnaround time, and 37% productivity gain. In addition to cancer, the AI platform supports pathologists in the accurate grading, as well as detection and diagnosis of multiple clinical features, such as tumor size, perineural invasion, high-grade PIN (Prostatic Intraepithelial Neoplasia) and more. The accuracy level of Galen Prostate for cancer detection was the highest level reported in the field, with a sensitivity rate of 98.46%, specificity of 97.33% and an AUC of 0.991. When used as an automated ‘second read,’ the platform alerts pathologists when discrepancies between their diagnosis and the AI algorithm’s findings are detected, providing a safety net against error or misdiagnosis, previously reported as high as 12%, and increasing overall quality of care.

Through breakthrough innovations and partnerships, Philips integrates intelligence and automation into its Precision Diagnosis portfolio, including smart diagnostic systems, integrated workflow solutions that transform departmental operations, advanced informatics that provides diagnostic confidence, and care pathway solutions that allow medical professionals to tailor treatment to individual patients. By developing and integrating these AI-enabled applications, the company aims to enhance the ability to turn data into actionable insights and drive the right care in the right sequence at the right time. The latest partnership announcement with Ibex follows recent AI partnership announcements with DiA Imaging Analysis for AI-powered ultrasound applications, and AI software provider Lunit, incorporating its chest detection suite into Philips diagnostic X-ray suite. These partner solutions complement Philips own AI solutions in personal health, precision diagnosis and treatment, and connected care.

“Building on our strong portfolio to support clinical decision-making in oncology, we bring together the power of imaging, pathology, genomics and longitudinal data with insights from artificial intelligence (AI) to help empower clinicians to deliver clear care pathways with predictable outcomes for every patient,” said Kees Wesdorp, Chief Business Leader, Precision Diagnosis at Philips. “By teaming with Ibex to incorporate their AI into our Digital Pathology Solutions, we’re further able to provide a continuous pathway, where critical patient data is made visible to both pathologists and oncologists to help improve the clinician experience and patient outcomes.”

“Pathology is transforming at an increasing pace and AI is one of the major drivers, supporting a more rapid and accurate cancer diagnosis,” said Joseph Mossel, CEO and Co-founder of Ibex Medical Analytics. “By joining forces with Philips, the leader in digital pathology deployments, we can offer new end-to-end solutions enabling pathologists to implement integrated, AI-powered workflows across a broader segment of the diagnostic pathway, improving the quality of patient care and strengthening the business case for digitization.”




Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
Pipette Controller
Sapphire MaxiPette
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: Signs of multiple sclerosis show up in blood years before symptoms appear (Photo courtesy of vitstudio/Shutterstock)

Unique Autoantibody Signature to Help Diagnose Multiple Sclerosis Years before Symptom Onset

Autoimmune diseases such as multiple sclerosis (MS) are thought to occur partly due to unusual immune responses to common infections. Early MS symptoms, including dizziness, spasms, and fatigue, often... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: Microscope image showing human colorectal cancer tumor with Fusobacterium nucleatum stained in a red-purple color (Photo courtesy of Fred Hutch Cancer Center)

Mouth Bacteria Test Could Predict Colon Cancer Progression

Colon cancer, a relatively common but challenging disease to diagnose, requires confirmation through a colonoscopy or surgery. Recently, there has been a worrying increase in colon cancer rates among younger... Read more

Pathology

view channel
Image: A new study has identified patterns that predict ovarian cancer relapse (Photo courtesy of Cedars-Sinai)

Spatial Tissue Analysis Identifies Patterns Associated With Ovarian Cancer Relapse

High-grade serous ovarian carcinoma is the most lethal type of ovarian cancer, and it poses significant detection challenges. Typically, patients initially respond to surgery and chemotherapy, but the... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.