Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
RANDOX LABORATORIES

Download Mobile App




Synthetic Printed Implants Prompt Spinal Regeneration in Model

By LabMedica International staff writers
Posted on 31 Jan 2019
The potential use of three-dimensional (3D) printing to produce replacement components for the repair of spinal damage was demonstrated in a rat model system.

Up to now, three-dimensional printing of central nervous system (CNS) structures has not been accomplished, possibly owing to the complexity of CNS architecture. To rectify this situation, investigators at the University of California, San Diego (USA) used a three-dimensional microscale continuous projection printing method (MuCPP) to create a complex CNS structure for regenerative medicine applications in the spinal cord.

The MuCPP method enabled printing of three-dimensional biomimetic hydrogel scaffolds that were tailored to the dimensions of the rodent spinal cord. This process required only 1.6 seconds and was scalable to human spinal cord sizes and lesion geometries. In this regard, four-centimeter-sized implants modeled from MRI scans of actual human spinal cord injuries were printed within 10 minutes. The printed scaffolds contained dozens of 200-micrometer-wide channels that guided neural stem cell and axon growth along the length of the spinal cord injury.

The investigators tested the ability of MuCPP three-dimensional-printed scaffolds loaded with neural progenitor cells (NPCs) to support axon regeneration and form new "neural relays" across sites of complete spinal cord injury in vivo in rodents.

They reported in the January 14, 2019, online edition of the journal Nature Medicine that injured host axons regenerated into three-dimensional biomimetic scaffolds and synapsed onto NPCs implanted into the device. Implanted NPCs in turn extended axons out of the scaffold and into the host spinal cord below the injury to restore synaptic transmission and significantly improve the animal's ability to move.

"In recent years and papers, we have progressively moved closer to the goal of abundant, long-distance regeneration of injured axons in spinal cord injury, which is fundamental to any true restoration of physical function," said senior author Dr. Mark Tuszynski, professor of neuroscience at the University of California, San Diego.

Related Links:
University of California, San Diego


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
COVID-19 Antigen Self-Test
Panbio COVID-19 Antigen Self-Test
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: Signs of multiple sclerosis show up in blood years before symptoms appear (Photo courtesy of vitstudio/Shutterstock)

Unique Autoantibody Signature to Help Diagnose Multiple Sclerosis Years before Symptom Onset

Autoimmune diseases such as multiple sclerosis (MS) are thought to occur partly due to unusual immune responses to common infections. Early MS symptoms, including dizziness, spasms, and fatigue, often... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: Microscope image showing human colorectal cancer tumor with Fusobacterium nucleatum stained in a red-purple color (Photo courtesy of Fred Hutch Cancer Center)

Mouth Bacteria Test Could Predict Colon Cancer Progression

Colon cancer, a relatively common but challenging disease to diagnose, requires confirmation through a colonoscopy or surgery. Recently, there has been a worrying increase in colon cancer rates among younger... Read more

Pathology

view channel
Image: A new study has identified patterns that predict ovarian cancer relapse (Photo courtesy of Cedars-Sinai)

Spatial Tissue Analysis Identifies Patterns Associated With Ovarian Cancer Relapse

High-grade serous ovarian carcinoma is the most lethal type of ovarian cancer, and it poses significant detection challenges. Typically, patients initially respond to surgery and chemotherapy, but the... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.