We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




PB Transposon Mutagenesis Identifies Malaria Genes and Drug Targets

By LabMedica International staff writers
Posted on 15 May 2018
A team of genome researchers took advantage of the unusual nucleotide composition of Plasmodium falciparum DNA to create mutant strains of the malaria parasite in order to identify essential genes and potential drug targets.

Malaria remains a devastating global parasitic disease, with the majority of malaria deaths caused by the highly virulent P. falciparum. The extreme adenine-thymine (AT)-bias of the P. falciparum genome has hampered genetic studies through targeted approaches such as homologous recombination or CRISPR/Cas9, and only a few hundred P. falciparum mutants have been experimentally generated in the past decades.

Investigators at the University of South Florida (Tampa, USA) exploited the AT-richness of the P. falciparum genome by using piggyBac transposon insertion sites to achieve saturation-level mutagenesis. The enriched A-T composition of the P. falciparum genome presented numerous piggyBac transposon insertion targets within both gene coding and noncoding flanking sequences.

PiggyBac (PB) transposons are mobile genetic elements that efficiently transpose between vectors and chromosomes via a "cut and paste" mechanism. During transposition, the PB transposase recognizes transposon-specific inverted terminal repeat sequences (ITRs) located on both ends of the transposon vector and efficiently moves the contents from the original sites and efficiently integrates them into TTAA (thymine-thymine-adenine-adenine) chromosomal sites. The powerful activity of the piggyBac transposon system enables genes of interest between the two ITRs in the PB vector to be easily mobilized into target genomes. The TTAA-specific transposon piggyBac is rapidly becoming a highly useful transposon for genetic engineering of a wide variety of species, particularly insects.

The investigators reported in the May 4, 2018, online issue of the journal Science that by using transposon mutagenesis of P. falciparum they generated more than 38,000 mutants, saturating the genome and defining mutability and fitness costs for over 87% of genes. Of 5399 genes, the study defined 2680 genes as essential for optimal growth of asexual blood stages in vitro.

Genes predicted to be essential included genes implicated in drug resistance as well as targets considered to be of high value for drugs development. Furthermore, the screen revealed essential genes that were specific to human Plasmodium parasites but absent from rodent-infective species, such as lipid metabolic genes that may be crucial to transmission commitment in human infections.

"This is a transformative advance," said senior author Dr. John H. Adams, professor of global health at the University of South Florida. "The genome of this malaria parasite has been resistant to most methods in the modern genetics toolbox. Consequently, functional importance of only a few hundred genes was determined. Using piggyBac mutagenesis, our new genetic tool, we have functionally characterized nearly all of the parasite's genes. Identifying essential genes and pathways will help guide and accelerate future drug and vaccine development."

Related Links:
University of South Florida


Platinum Member
ADAMTS-13 Protease Activity Test
ATS-13 Activity Assay
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
Blood Glucose Reference Analyzer
Nova Primary
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: Signs of multiple sclerosis show up in blood years before symptoms appear (Photo courtesy of vitstudio/Shutterstock)

Unique Autoantibody Signature to Help Diagnose Multiple Sclerosis Years before Symptom Onset

Autoimmune diseases such as multiple sclerosis (MS) are thought to occur partly due to unusual immune responses to common infections. Early MS symptoms, including dizziness, spasms, and fatigue, often... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: Microscope image showing human colorectal cancer tumor with Fusobacterium nucleatum stained in a red-purple color (Photo courtesy of Fred Hutch Cancer Center)

Mouth Bacteria Test Could Predict Colon Cancer Progression

Colon cancer, a relatively common but challenging disease to diagnose, requires confirmation through a colonoscopy or surgery. Recently, there has been a worrying increase in colon cancer rates among younger... Read more

Pathology

view channel
Image: A new study has identified patterns that predict ovarian cancer relapse (Photo courtesy of Cedars-Sinai)

Spatial Tissue Analysis Identifies Patterns Associated With Ovarian Cancer Relapse

High-grade serous ovarian carcinoma is the most lethal type of ovarian cancer, and it poses significant detection challenges. Typically, patients initially respond to surgery and chemotherapy, but the... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.